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Abstract. The design of quality measures for approximations of the
Pareto-optimal set is of high importance not only for the performance
assessment, but also for the construction of multiobjective optimizers.
Various measures have been proposed in the literature with the intention
to capture different preferences of the decision maker. A quality measure
that possesses a highly desirable feature is the hypervolume measure:
whenever one approximation completely dominates another approxima-
tion, the hypervolume of the former will be greater than the hypervolume
of the latter. Unfortunately, this measure—as any measure inducing a to-
tal order on the search space—is biased, in particular towards convex,
inner portions of the objective space. Thus, an open question in this con-
text is whether it can be modified such that other preferences such as
a bias towards extreme solutions can be obtained. This paper proposes
a methodology for quality measure design based on the hypervolume
measure and demonstrates its usefulness for three types of preferences.

1 Motivation

Using the hypervolume of the dominated portion of the objective space as a
measure for the quality of Pareto set approximations has received more and
more attention in recent years. The reason is that this measure has two important
advantages over other set measures:

1. It is sensitive to any type of improvements, i.e., whenever an approximation
set A dominates another approximation set B, then the measure yields a
strictly better quality value for the former than for the latter set [23].

2. As aresult from the first property, the hypervolume measure guarantees that
any approximation set A that achieves the maximally possible quality value
for a particular problem contains all Pareto-optimal objective vectors [5].

So far, this is the only measure known in the literature on evolutionary multi-
criterion optimization that possesses these properties.

The hypervolume measure—or hypervolume indicator [23]—was first proposed
and employed in [2122] where it was denoted as ‘size of the space covered’; later,

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 862-[876} 2007.
© Springer-Verlag Berlin Heidelberg 2007



The Hypervolume Indicator Revisited 863

also other terms such as ‘hyperarea metric’ [I4], ‘S-metric’ [I8], and ‘Lebesgue
measure’ [1115] were used. On the one hand, the hypervolume indicator is mean-
while among the most popular measures for the performance assessment of multi-
objective optimizers and in this context it has been subject to several theoretical
investigations [8I5I23/T5]. On the other hand, there are some studies that discuss
the usage of this measure for multiobjective search [I0J204] and in particular
the issue of fast hypervolume calculation has been a focus of research recently
L6 7I6UT).

Despite the aforementioned advantages of the hypervolume indicator, it in-
evitably has its biases. There is some freedom with respect to the choice of
the reference point, but nevertheless it represents only one particular class of
preference information that may not be appropriate in specific situations. This
discussion directly leads to the question of whether it is possible to design quality
measures that (i) share the two above properties of the hypervolume indicator,
while (ii) standing for a different type of preferences of the decision maker. The
fact that besides the hypervolume no other measures with these properties are
known indicates that the formalization of arbitrary preferences in terms of a
quality measure may be difficult. However, not being aware of such measures
does not imply that such indicators do not exist.

This paper presents a first step to tackle this issue: it demonstrates that
novel quality measures with the aforementioned properties can be designed and
proposes a general design methodology on the basis of the hypervolume indicator.
In detail, the key contributions are:

— A generalized definition of the hypervolume indicator using attainment func-
tions [2] that can be used for any type of dominance relation;

— A weighted-integration approach to directly manipulate and control the influ-
ence of certain regions in the objective space for the hypervolume indicator;

— Three new example set measures for biobjective problems that provide the
same sensitivity as the hypervolume indicator, but represent different types
of preference information: (i) the preference of extreme solutions, (ii) the
preference of predefined reference points, and (iii) bias towards one of the
objectives.

The usefulness of the methodology and the three proposed measures is demon-
strated on selected test problems.

2 Mathematical Framework

2.1 Preliminaries

Without loss of generalization, we consider a maximization problem with n ob-
jective functions f; : X — (0,1)", 1 < 4 < n. Requiring the objective values
to lay between 0 and 1 instead of using R™ as objective space simplifies the
following discussions, but does not represent a serious limitation as there exists
a bijective mapping from R into the open interval (0,1) C R. The objective
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functions map a solution * € X in the decision space to an objective vector
f(@) = (fi(x),..., folx)) € (0,1)" in the objective space Z = (0,1)™.

In the following, the (weak) Pareto-dominance relation > is used as a prefer-
ence relation on the search space X indicating that a solution « is at least as
good as a solution y (x = y) if and only if V1 < i < n: fi(x) > fl(y) This
relation can be canonically extended to sets of solutions where a set A C X
weakly dominates a set BC X (A> B)iff Vy € B3z € A: x = y [23]. Note
that any other type of dominance relation, e.g., based on arbitrary convex cones
[13], could be used as well, and the considerations in this paper apply to any
dominance relation.

Given the preference relation >, we consider the optimization goal to identify
a set of solutions that approximates the set of Pareto-optimal solutions and
ideally this set is not strictly dominated by any other approximation set. For
reasons of simplicity though, we assume that the outcome of a multiobjective
optimizer is a set of objective vectors, also denoted as approzimation set, and
the set of all possible objective vector sets is denoted as §2 := 2%. Therefore,
we will also use the symbol > for objective vectors and objective vector sets,
although it is originally defined on X. In practice, one always obtains a set of
decision vectors instead of objective vectors, but most often only the objective
vectors are considered to evaluate the quality of a solution set.

Since the generalized weak Pareto dominance relation > defines only a partial
order on (2, there may be incomparable sets in {2 which may cause difficulties
with respect to search and performance assessment. These difficulties become
more serious as the number of objectives in the problem formulation increases,
see [3] for details. One way to circumvent this problem is to define a total order
on {2 which guarantees that any two objective vector sets are mutually compa-
rable. To this end, quality indicators have been introduced that assign, in the
simplest case, each approximation set a real number, i.e., a (unary) indicator I
is a function I : 2 — R, cf. [23]. One important feature an indicator should have
is Pareto compliance [9], i.e., it must not contradict the order induced by the
Pareto dominance relation. In detail, this means that whenever A = B A B £ A,
then the indicator value of A must not be worse than the indicator value of B. A
stricter version of compliance would be to require that A = B A B A implies
that the indicator value of A is strictly better than the indicator value of B (if
better means a higher indicator value):

A=B A B# A= I(A)>I(B)

So far, the hypervolume indicator has been the only known indicator with this
property.

YIfx > y, we say @ weakly dominates y. Two solutions & and y are called incomparable
if neither weakly dominates the other one. If for two solutions  and y both * > y
and y ¥ « holds, we say that x is strictly better than y or x strictly dominates y
(z > y). A solution * € X is called Pareto optimal if there is no other € X that
strictly dominates ™.
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2.2 The Hypervolume Indicator

The classical definitions of the hypervolume indicator are based on volumes
of polytopes [22] or hypercubes [5] and assume that Pareto dominance is the
underlying preference relation. Here, we give a generalized definition based on
attainment functions that allows to consider arbitrary dominance relations.

The attainment function [2] gives, roughly speaking, for each objective vector
in Z the probability that it is weakly dominated by the outcome of a particular
multiobjective optimizer. As only single sets are considered here, we can take a
slightly simplified definition of the attainment function:

Definition 1 (Attainment function for an objective vector set). Given
a set A € (2, the attainment function a4 : [0,1]" — {0,1} for A is defined as

aa(z) = {é Az =)

forze Z.

This definition is illustrated for weak Pareto dominance in Fig. [l and applies to
any type of dominance relation.

The concept of attainment functions can now be used to give a formal defini-
tion of the well known hypervolume indicator. It is simply defined as the volume
of the objective space enclosed by the attainment function and the axes.

Definition 2 (Hypervolume indicator). The hypervolume indicator I}, with
reference point (0,...,0) can be formulated via the attainment function as

(L,01)
I (A) = / aa(z)dz
(07"'70)

where A is any objective vector set in (2.

In the following section, we will give a rough overview about the new concepts
that are introduced in the paper and illustrate how I};(A) can be modified
to incorporate preference information without violating compliance to Pareto
dominance.

3 Introductory Example and Outline of the Proposed
Approach

The attainment function, the integration over which gives the hypervolume for
a given set A, is a binary function: all weakly dominated objective vectors are
assigned 1, while the remaining objective vectors are assigned 0. That means all
weakly dominated objective vectors have the same weight and contribute equally
to the overall indicator value.

The main idea behind the approach proposed in this paper is to give differ-
ent weights to different regions in the objective space. This can be achieved by
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Fig. 1. Illustration of the attainment function as for A = {a1,a2,as} in the two-
dimensional case

defining a weight distribution over the objective space such that the value that
a particular weakly dominated objective vector contributes to the overall indi-
cator value can be any real value greater than 0—provided the integral over the
resulting function still exists. To this end, we introduce a weight distribution
function w : Z — R, and the hypervolume is calculated as the integral over the
product of the weight distribution function and the attainment function:

(1,..,1)
Ig(A) = / w(z) - aa(z)dz
(0,...,0)

As will be shown later, thereby the basic hypervolume indicator can be modified
such that (a) the compliance to Pareto dominance is preserved and (b) preference
information can be flexibly introduced.

To see what the effect of different weight distribution functions is on the
behavior of the corresponding modified hypervolume indicator I, it is helpful
to consider equi-indicator surfaces. An equi-indicator surface S(I, K) for a given
indicator function I and an indicator value K is defined as the set of points
z € Z that each has an indicator value K, i.e.:

S(I,K)={z€ Z: I({z}) = K}

In other words, the equi-indicator surface represents the indicator field for ap-
proximation sets with a single element.

If we consider a uniform weight distribution function with w(z) = 1 for z € Z,
we obtain the standard hypervolume indicator I7;. In this case, the equi-indicator
surfaces looks for n = 2 as depicted in Fig. Bh; from the representation of these
curves, one can conclude that the standard hypervolume indicator has convex
equi-indicator surfaces and therefore implicitly introduces a preference towards
solutions close the the diagonal. For instance, consider the point (0.5,0.5) located
on the diagonal. To obtain the same indicator value for a point not on the
diagonal, the degradation in one objective needs to be compensated by a larger
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(a) The hypervolume indicator (b) A biased indicator

Fig. 2. Equi-indicator surfaces for simple indicators in the biobjective case. The ab-
scissa in these two-dimensional examples denotes fi and the ordinate f2. Figure (a)
shows (a sample of) surfaces for the hypervolume indicator Iz (weight distribution
function w((z1, 22)) = 1), Figure (b) illustrates a biased, modified indicator with weight
distribution function w((z1, z2)) = z1. Points on one equipotential curve share the same
indicator value.

improvement in the other objective, e.g., (0.25,1) instead of (0.25,0.75) where
degradation and improvement would be both 0.25.

If we now change the weight distribution function to w(z) = z; with z =
(21,22, .-+, 2n), then in the biobjective case the equi-indicator surfaces shown in
Fig.[2b are obtained. Obviously, solutions with objective vectors that have large
components in the direction of z; are preferred.

Another possibility is to impose special emphasis on the border of the ob-
jective space, see Fig. Bh. The objective vectors in the ’center’ of the objective
space have weight 1, while the objective vectors on the axes are assigned a sub-
stantially larger WeightE The corresponding equi-indicator surfaces are shown in
Fig.Bb. Here, the bias of the original hypervolume indicator for a single solution
towards the diagonal is removed by putting more emphasis on the areas close to
the coordinate axes.

The above two examples illustrate how weight distribution functions on the
objective space can be used to change the bias of the hypervolume indicator.
Based on these informal observations, we will describe the underlying
methodology next.

4 Methodology: The Weighted-Integration Approach

The main concept of the approach proposed in this paper is to extend the basic
hypervolume indicator by a weight distribution function w : [0, 1] — R* which
serves to emphasize certain regions of the objective space:

2 Since the borders have zero width, they will actually not influence the integral;
therefore, dirac-type functions need to be used to make the border weights effective.
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(a) Weight distribution function with (b) (Sample of the) equi-indicator
emphasis on the coordinate axes surfaces for the corresponding indicator

Fig. 3. Weight distribution function (left) and corresponding indicator (right) when
stressing on coordinate axes

Definition 3 (Generalized Hypervolume Indicator). The generalized hy-
pervolume indicator I} with weight distribution function w : [0,1]" — RT is
defined as the weighted integral

(1,...,1)
IH(A) = / w(z) - aa(z)dz
(01”'70)
where A is an approximation set in {2.

If using this indicator as the basis for optimization algorithms or performance
assessment tools, it would be important to know whether it is compliant with
the concept of Pareto-dominance. This property will be shown next.

Theorem 1. Let w be a weight distribution function w : [0,1]" — R* such that
the corresponding generalized hypervolume indicator If; is well-defined for all
A € 2. Then for any two arbitrary approrimation sets A € {2 and B € §2, it
holds

A»B N B# A= I5(A) > I5(B).

Proof. If we have A = B A B # A, then the following two conditions hold:
Vye Bdxc A:x>-yanddr € A Ay € B:y = x. Now we can easily see
that the attainment functions of A and B satisfy (aa(z) = 1) = (ap(z) = 1)
as A = B. Every point in the objective space that is weakly dominated by some
element in B is also weakly dominated by some element in A. In addition, as
B # A there are some points in the objective space that are weakly dominated
by points in A but not weakly dominated by points in B. Therefore, there exists
aregion R C Z with (@a(z) =1) A (ap(z) =0) for z € R; in particular:

(1,01)
/ (0a(z) — ap(z))dz > 0
(07'“70)

Using the definition of the generalized hypervolume indicator and noting that
w(z) >0, we find IH(A) > I4(B). 0
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In order to simplify the definition of weight distribution functions and to avoid
the use of dirac-type functions, we use a slightly different representation of the
generalized hypervolume indicator where line segments can be used to establish
emphasis on zero-width regions such as axes. Every line segment [; is specified
by a start point s; € Z, an end point e; € Z, and a corresponding weight
distribution function w; : [0, 1] — R{. Using these notation, we can rewrite the
generalized hypervolume indicator according to Def. [ as follows

o _ (1,...,1)
IE’wl’wz,m,wL<A) = / ’U}(Z) . aA(Z) -dz +
(0,...,0)

1
/m-<z>-cm<si+t-<ei—si>>-dt
ic{1,2,..,.L} 70

Assuming that the weight distribution functions are chosen such that all integrals
are well-defined, it is easy to see that the property proven in Theorem [ is
preserved.

In the following, we will discuss three examples of useful weight distribution
functions that will also be used for experimental results.

1. The first weight distribution function is the sum of two exponential functions
in direction of the axes:

wext(z) — (620-z1 4 620'22)/(2 . 620)

with L = 0. The effect is an indicator with preference of extremal solutions.
Because of the weight distribution function’s steep slope near the two axes,
a Pareto front approximation with solutions crowded near the axes yield a
larger indicator value than a population with solutions in the interior region
of the objective space where the weight distribution function contribute less
to the indicator value.

2. The second weight distribution function focuses on the second objective by
using an exponential function in fs-direction:

wsym (z) _ e20-zz/€20

In addition, the following line segment with a constant weight distribution
function on the fi-axis is used:

mllzsym<z) =400, s; = (070), ey = (170)

where L = 1. This combination results in an indicator preferring solutions
with extreme f5 values and an additional solution near the f; axis. The
additional line segment along the f; axis used here instead of an additional
exponential function in f; direction yields only a single additional solution
lying near the f; axis instead of many solutions with large f; value as with
the weight distribution function defined above.
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3. Often, a decision maker has some idea which points in the search space are
the most important ones. With the third weight distribution function, we can
integrate such information into a Pareto-compliant indicator. A point (a,b)
of interest, also called reference point, can be chosen in advance. The weight
distribution function defined below will direct the search of indicator based
algorithms towards this point. Multiple reference points can be considered
simultaneously by adding up the corresponding distinct weight distribution
functions.

The following weight distribution function is based on a ridge-like function
through the reference point (a,b), parallel to the diagonal:

(0.01+(2(z—a)—2(y—b))?)

ref . {c + (2=((2(r—a))*+(2(y—b))*)) if |21 —a] <0.5A ]z =] < 0.5
w'(z) =
c else

with L = 0. The constant ¢ should be chosen small in comparison to the
values of the ridge; here, we use ¢ = 107°.

The computation of the generalized hypervolume indicator is based on the rep-
resentation described above. It first partitions the whole unit hypercube [0, 1]"
into smaller hyperrectangles based on the objective vectors contained in the set
A, and then the weighted volumes of these hyperrectangles are added. To this
end, the above weight distribution functions have been symbolically integrated
using a commercial symbolic mathematics tool.

5 Proof-of-Principle Results

5.1 Simple Indicator-Based Optimization Algorithm

For the experimental validation of the weighted-integration approach, a simple
indicator-based evolutionary algorithm (SIBEA) is considered that uses similar
concepts as proposed in [I0/20M4]7]. As the purpose of this section is to show
the influence of preference information which has been incorporated into the
generalized hypervolume indicator and not to compare different optimization al-
gorithms, methods to improve the convergence rate such as fitness-based mating
selection are not taken into account.

SIBEA (Simple Indicator-Based Evolutionary Algorithm)
Input: population size u; number of generations N; indicator function I;
Output: approximation of Pareto-optimal set A;

Step 1 (Initialization): Generate an initial set of decision vectors P of size y; set
the generation counter m := 0.

Step 2 (Environmental Selection): Iterate the following three steps until the size
of the population does no longer exceed pu:

1. Rank the population using Pareto dominance and determine the set of indi-
viduals P’ C P with the worst rank.
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2. For each solution € P’ determine the loss d(x) w.r.t. the indicator I if it
is removed from P’ i.e., d(x) := I(P') — I(P’ \ {z}).

3. Remove the solution with the smallest loss d(x) from the population P (ties
are broken randomly).

Step 3 (Termination): If m > N then set A := P and stop; otherwise set
m:=m+ 1.

Step 4 (Mating): Randomly select elements from P to form a temporary mating
pool @ of size p. Apply variation operators such as recombination and mutation
to the mating pool @ which yields @’. Set P := P + Q' (multi-set union) and
continue with Step 2.

As to the environmental selection step, an issue are dominated individuals
in the population: they never lead to a change in the indicator value which is
entirely determined by the nondominated front of the population. Therefore, the
population is first partitioned into fronts (Step 2.1) using the dominance rank
(number of dominating individuals)ﬁ, and only individuals located in the worst
front are investigated for deletion.

Furthermore, we consider two scaling variants to obtain the maximum effect
of the weighted integral: online and offline scaling. In the online variant, the
objective function values are scaled to the interval [0,1] within each genera-
tion; to guarantee that boundary solutions contribute a non-zero hypervolume
to the overall indicator value, for each axis a line segment with a constant weight
distribution function is added. The offline variant does not scale the objective
function values but the weighting distribution function. In detail, the weighted
integral is only computed over and scaled to the region of the Pareto front, which
needs to be known in advance. Since any approximation set outside this region
would yield an indicator value of zero, the standard hypervolume indicator value,
down-scaled such that is does not interfere with the weighted integral, is added.

5.2 Experiments

We now show how the three weight distribution functions defined above influence
the search process of SIBEA for three biobjective test problems. For each weight
distribution function, we derive two indicators, one for the online scaling method
and one for offline scaling, resulting in six different indicators overall. We name
the corresponding indicators I, I;7¥™, and I}}ef respectively, and distinguish
between the online and the offline version. The same holds for the usual hypervol-
ume indicator I, where we also distinguish between the two scaling methods.
The test functions ZDT1, ZDT3, and ZDT6, cf. [19], are optimized by a

SIBEA run with population size 20 for 1000 generationsq Note, that the ZDT

3 A nondominating sorting could be used as well.

* The individuals are coded as real vectors with 30 (ZDT1 and ZDT3) and 10 (ZDT6
decision variables, where the SBX-20 operator is used for recombination and a poly-
nomial distribution for mutation. The recombination and mutation probabilities were
set to 1.0, according to [3].
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Fig. 4. Pareto front approximations for the three different indicators based on weight
distribution functions on the function ZDT1. For reference, the generated Pareto front
approximation using the usual hypervolume indicator Iy is given in (a). The two scaling
methods are plotted for comparison.

functions are to be minimized. Thus, an internal transformation is performed,
independent whether the online or offline scaling is enabled.

The figures Fig [ Fig. B, and Fig. [ show the computed Pareto front ap-
proximations after 1000 generations for the three ZDT functions and the three

indicators I§, I7¥™, and I}}ef with both scaling methods. The reference point

for I;ff is chosen as (0.5,0.6) for ZDT1 and ZDT6 and as (0.5,1.2) for zDTA.
The approximation derived with the established hypervolume indicator Iy is
also shown as golden reference.

The experiments show two main aspects. Firstly, the behavior of the evolu-
tionary algorithm is similar for all three problems if always the same indicator is
used—independent of the front shape and the scaling method used. With the in-
dicator I the solutions accumulate near the extremal points. When using the
indicator I;7¥"™, mainly the f values are minimized. Due to the additional weight
on the line segment, at least one solution with large f; value is also kept in the

population if 17" is used. With the indicator I ;Ief , the population moves towards

® The reference point is changed for ZDT3 due to the larger Pareto-optimal front of
the ZDT3 problem.
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Fig. 5. Pareto front approximations for the three different indicators and the two scal-
ing methods on the function ZDT3. For reference, the generated Pareto front approx-
imation using the usual hypervolume indicator Iy is given in (a). Due to the larger
Pareto-optimal front, the reference point for I ;{ef is chosen as (0.5, 1.2).

the predefined reference point (0.5,0.6), and (0.5, 1.2) respectively. Secondly, the
weighted-integration approach seems to be feasible for designing new Pareto-
compliant indicators according to specific preferences. The simple indicator-based
algorithm was indeed attracted to those regions in the objective space that were
particularly emphasized by means of large weight values.

When comparing the two scaling variants, online and offline, only slight dif-
ferences can be observed with the test cases studied in this paper. Online scaling
has the advantage that the preferences are always adapted according to the cur-
rent shape of the Pareto front approximation. However, thereby the actual global
indicator changes during the run and potentially cycles can occur during the op-
timization process—a phenomenon, cf. [12], that emerges with most algorithms.
Cycling is not necessarily a problem in the biobjective case, but as the number
of objectives increases, it is likely that this behavior causes difficulties. The al-
ternative is offline scaling. Here, the indicator remains fixed and can be used for
comparing the outcomes of different methods. The drawback of this approach is
the requirement that domain knowledge is available: either about the location
of the Pareto front or about regions of interest. This problem holds basically for
all types of indicators.
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Fig. 6. Pareto front approximations for the three different indicators based on weight
distribution functions on the function ZDT6. Plot (a) shows the generated Pareto front
approximation using the usual hypervolume indicator Iy for comparison. The reference
point for I}y is chosen as (0.5,0.6).

6 Discussion

This paper has introduced a novel methodology to design Pareto-compliant in-
dicators on the basis of the hypervolume indicator. Different preferences can
be integrated, while an important property of the hypervolume indicator, sen-
sitivity to dominance, is preserved. This is insofar an important result as up to
now the pure hypervolume indicator has been the only one with this property.
The possibility to design dominance-sensitive and Pareto-compliant indicators
that can guide the search towards extreme solutions or reference points offers
therefore more flexibility to tune the search with respect to the decision maker’s
preferences. We have demonstrated how this approach works and can be used
for three example indicators in biobjective scenarios. As expected, the outcomes
reflected the encoded preferences.

The presented methodology offers new ways for multiobjective optimization
and performance assessment. However, this paper is just a first step in this direc-
tion, and the capabilities as well as the limitations of the weighted-integration
approach need to be explored and require more research. In particular, the fol-
lowing considerations may point to interesting future research topics:
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— The presented new indicators are designed for biobjective problems, but
clearly one is interested in general indicators for n objectives; the first two
indicators can be easily extended to higher dimensions, but for the ridge-
based indicators this extension is not straight forward. The definition of
general indicator classes for an arbitrary number of objectives will be one of
the next steps to take.

— The efficient computation of the generalized hypervolume indicator based
on weight distribution functions is especially an issue, if it is hard to obtain
a function for the integral in closed form; here, numerical approximation
might be a solution, although it is unclear how such an approach could work
in practice.

— Whether novel indicators require new algorithms is an open issue; this holds
in particular when other dominance relations based an arbitrary convex cones
are used.
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