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Abstract—Assuming that evolutionary multiobjective optimiza- a binary relation, e.g., extended Pareto-dominance on sets
tion (EMO) mainly deals with set problems, one can identify three  Transforming the original problem into such a set problem
core questions in this area of research: (i) how to formalize what offers many advantages for decision making, but also poses

type of Pareto set approximation is sought, (i) how to use this hall in t f h lexit
information within an algorithm to efficiently search for a good ~N€W ChallENGES In t€rms or search space complexity.

Pareto set approximation, and (i) how to compare the Pareto  In the light of this dicussion, three core research issues
set approximations generated by different optimizers with respet  -gn be identified in the EMO field: (i) how to formalize the

to the formalized optimization goal. There is a vast amount of i At ; e
studies addressing these issues from different angles, but so far_OptlmlzatIon goal in the sense of specifying what type of set

only few studies can be found that consider all questions under IS SOUght, (i) how to effectively search for a suitable set
one roof. to achieve the formalized optimization goal, and (iii) how

This paper is an attempt to summarize recent developments in 10 evaluate the outcomes of multiobjective optimizers with
the EMO field within a unifying theory of set-based multiobjec- respect to the underlying set problem.

:lve search. It dlscu_sses how preference relations on sets cae b The question of what a good set of compromise solutions
ormally defined, gives examples for selected user preferences,. -
and proposes a general, preference-independent hill climber IS dépends on the preferences of the decision maker. Suppose
for multiobjective optimization with theoretical convergence for instance, that a few representative solutions are to be
properties. Furthermore, it shows how to use set preference selected from a large Pareto-optimal set; the actual choice
relations for statistical performance assessment and provides cgn he quite different for different users. Many multiobijee

corresponding experimental results. The proposed methodology o, 01 tionary algorithms (MOEAs) aim at generating a subset
brings together preference articulation, algorithm design, and

performance assessment under one framework and thereby ope  that is uniformly distributed in the objective space [16],[
up a new perspective on EMO. [37], others consider the subset maximizing the hypervelum

of the dominated objective space as the best one [14], [22].
There are many more possibilites depending on the user and
|. INTRODUCTION the situation: one may be interested in the extreme regibns o

By far most publications within the field of evolutionaryth® Pareto-optimal set [9], in convex portions of the traffe-
multiobjective optimization (EMO) focus on the issue 0§urface (knee points) [3], or in regions close to a predefined
generating a suitable approximation of the Pareto-optsegl deal point [11], to name only a few. These preferences are
or Pareto set approximation for short. For instance, the filgSually hard-coded in the algorithm, although there hawmbe
book on EMO by Kalyanmoy Deb [7] is mainly devotecttemtps to design methods with more flexibility with redpec
to techniques of finding multiple trade-off solutions usind® USer preferences [36], [13].
evolutionary algorithms. Overall, one can conclude that EMO in general reliesen

Taking this view, one can state that EMO in general dedieferencesi.e., preference information that specifies whether
with set problems: the search spakeonsists of all potential ©N€ Pareto set approximation is better than another, and tha
Pareto set approximations rather than single solutioes, i MOEAs usually implement different types of set preferences
U is a set of sets. Furthermore, an appropriate ordefon There are various studies that focus on the issue of prefer-
is required to fully specifiy the set problem—this order wilBNce articulation in EMO, in particular integrating adafal
here be denoted as set preference relation. A set prefereR&ferences such as priorities, goals, and referencespfdinl,
relation provides the information on the basis of which thél [6], [23], [2], [11], [28]. However, these studies main
search is carried out; for any two Pareto set approximatiolf&Ver preferences on solutions and not preferences on sets.
it says whether one set is better or not. Set preferencéamsat Furthermore, there is a large amount of publications that de
can be defined, e.g., via set quality measures, which c4fh the definition and the application of quantitative qual
be regarded as objective functions for sets, or directipgisiMeasures for Pareto set approximations [20], [38], [314],[2



. T TABLE |
[40]. These quality measures or quality indicators refl@tt S oyeryiew oF IMPORTANT SYMBOLS USED THROUGHOUT THE PAPER

preferences and have been widely employed to compare theygg; [ meaning I
outcomes generated by different M_OEAS. Moreover, in recefity Set of feasible solutions resp. decision vectors
years a trend can be observed to directly use specific measurez objective space witlZ C R”
such as the hypervolume indicator and the epsilon indicatl rfj (fz,.-‘,fn) VeCtEr'F\,’a'Uteddfunc_t'Orf : XI? R™ -
. a Spar weal areto dominance relation on solutions
in the search process [27], [25], [15], [21], [36], [10], !14 a=b any preference relation on solutions
[22], [1]. Nevertheless, aeneral methodology to formalize =% a < bAb % a (strict preference)
set preferences and to use them for optimization is missing| a [ b a Z2bAb £ a (incomparability)
. a=0b a = b A b= a (indifference)
This paper represents one step towards such an overarchifgi v, =y optimal solutions with respect &
methodology. It proposes T set of all admissible solutions sets C X
. - W, set of all solutions setsl C X with [A] < m
1) a theory of set preference relations thgt clgrlﬂes hO...’A = weak Parelo dominance relafion on solution Sdts
user preferences on Pal‘etO Set appI’OXImatIOI']S can S} 4 B any preference relation on solution sets
formalized on the basis of quality indicators and whaf A <™t B constructed set preference relation that combifjes
criteria such formalizations must fulfill; introduces s j g'tg T'g’;“j ?'?T“f”tsfpam“o;"”g
. A< = strict preference
2) a gene_ral set-preference b_ased search algorithm that ¢an B AZ B A B £ A (incomparability)
be flexibly adapted to arbitrary types of set preference a =5 A < B A B < A (indifference)
relations and that can be shown to converge under certgirMin(¥, <) optimal solution sets with respect t¢

mild assumptions; and discusses
3) an approach to statistically compare the outcomes of
multiple search algorithms with respect to a specific sa{ Basic Terms

preference relation. o L
We are considering the optimization of vector-valued ob-

The novelty of this approach is that it brings all aspectsrefp jective functionsf = (f1, s fa) 1 X — R™ where all com-
erence articulation, multiobjective search, and perforeeaas- ponentsf; are—without loss of generality—to be minimized.
sessment under one roof, while achieving a clear separatiortere, ' denotes the feasible set of solutions in the decision
concerns. This offers several benefits: (i) it provides H#y  space, i.e. the set of alternatives of the decision probkem.
to the decision maker as he can change his preferences WithgHgle alternativer € X will be denoted as a decision vector
the need to modify the search algorithm, (ii) the search @n gy sojution. The image ok’ under is denoted as the feasible
better guided which is particularly important in the comtek  get in the objective spacg = FX)={yeR"|Tz e X :
high-dimensional objective spaces, (iii) algorithms dasd to y = f(z)} where Z C R". The objective values of a single

meet specific preferences can be compared on a fair basés siigernativer will be denoted as objective vectgr= f(z).
the optimization goal can be explicitly formulated in terofs

the underlying set preference relation. The practicabibit For reasons of simplicity, we suppose that the decision

) . minSpace is finite. Nevertheless, almost all results described
this approach has already been demonstrated in a prellynlnﬁ\]e paper hold for infinite sets also or can be generalized.

study which contains selected proof-of-principle res{@@]. Fig. 1 illustrates a possible scenario with 7 solutions ia th

.Th's paper is the full version of .th's study; in parchIar, 'feasible set and a two-dimensional objective space- ).
introduces the underlying theoretical framework and dosta

an extensive investigation of the proposed search methgygol

In the following, we will first provide the formal basis of
set preference relations and introduce fundamental césicep
Afterwards, we will discuss how set preference relations ca
be designed using quality indicators and present some dgamp
relations. A general, set preference based multiobjestagch
algorithm will be proposed in Section 1V, including a diseus
sion of convergence properties. Finally, Section V present
methodology to compare algorithms with respect to a given
set preference relation and provides experimental resoits Fig. 1. Optimization scenario With' = {f, g, i, j, k,1,m} andn = 2. In

selected preferences. the case that the preference relation is the weak Paretordone relation
=pan the shaded areas represent locations of solutions thatoanéated by
k (dark) and that dominatg (light).

decision space objective space

Il. ANEW PERSPECTIVE SET PREFERENCERELATIONS

As has been described in the introduction, multiobjective N order to allow for optimization in such a situation, we
optimization will be viewed as a preference-based optitioma "€€d @ preference relation < b on the feasible set in the
on sets. The purpose of this section is to formally define tif¢CiSion space which denotes that a solutois at least as
notation of optimization and optimality in this context atgd 9000 @s @ solutior. In the context of this paper, we will
provide the necessary foundations for the practical aigms SUPPOSe that all preference relations are preotdexswell
described in the forthcoming sections. Table | serves as ap preorder < on a given setS is reflexive and transitivea < @ and
reference for the nomenclature introduced in the following (a <bAb<¢) = (a < ¢) holds for alla, b, andc in S.



known preference relation in the context of multi-objeetiv In particular, this holds for the Pareto preference refatio

optimization is the (weak) Pareto-dominance. =par As a result, we may not only be interested in one of these
Definition 2.1: A solutiona € X weakly Pareto-dominates Minimal elements but in a carefully selected subset thatatsfl

a solutionb € X, denoted as <y b, if it is at least as good additional preference information of some decision maker.

in all objectives, i.e.fi(a) < f;(b) for all 1 < i < n. Traditional evolutionary multiobjective optimization theds

Note that=ps is only one example of a useful preferencé':\ttempt to solve this problem by maintaining and improving

relation. The results described in this paper are not gsttito sets of .deC|SIO.n vectors, denpted as populations. The cor

the concept of Pareto-dominance but hold for any preferenrceéc’pondlng opt|m|zat'|o'n algorithms are tuned to antieigat

relation defined on the set of solutions. preferences of a de<_:|5|on maker. o _
The situation that a solution is at least as good as a Thus, the underlying goal of set-based multiobjective -opti

solution b will also be denoted as being weakly preferable mization can be described as determining a (small-sizetd) se

to b in this paper. Moreover, we will use the following terms:01E alternative solutions

A solution a is strictly better than or preferable to a solution 1) that contains as many different decision vectors as possi

b (denoted asz < b) if a = b A b A a. A solution a is ble that are minimal with respect to a preference relation
incomparable to a solutioh (a || b) if a A bADb A a. A on the feasible set in the decision spgfer example
solutiona is equivalent or indifferent to a solutidn(denoted the weak Pareto-dominance according to Definition 2.1),
asa =b) if a < bAb < a. We say that a set of solutions and

form an equivalence class, if they are mutually equivaléfg.  2) whose selection of minimal and non-minimal decision
denote the set of minimal elemefis the ordered setS, <) vectors reflects the preferences of the decision maker.
as

As pointed out in Section |, it is the purpose of the paper

Min(S,2)={z €S| AaeS:asxnz£a} to define set-based multiobjective optimization on theasi

these two aspects. In contrast to previous results, thendeco

item as defined above is made formal and treated as a first
X" = Min(X, x) class citizen in optimization theory and algorithms. Thig n
only leads to a better understanding of classical popuiatio
E&ased multiobjective optimization but also allows for diefin
set-based methods with corresponding convergence results

. i _ . well as statistical tests to compare different algorithRisally,
Preference relations can also be depicted graphically.Zig, e\, set of optimization algorithms can be obtained which

shows a possible preordered set of solutians- {a,....m}.  can directly take preference information into account.

In particular, the preferences amodd,g,1,k,1,m} corre- _ .
spond directly to the scenario shown in Fig. 1. _Therefore, we need to formah_Z(_e the prefergnces of_a deci-
sion maker on the subset of decision vectors in an optimal set

We will call the set

the optimal set oft’ with respect to< and an element* € X’*
is an optimal solution. Optimization may now be termed
finding a minimal element in the ordered feasible ¥t <).

a b c of solutions. This will be done by defining a preordgron
the set of all possible sets of solutions. A set of solutiéhs
d e f b¥g c=b is defined as a §et_ of decision vectors, iz:_ee_ P =T € X.
O o A set of all admissible sets, e.g. sets of finite size, is dmhot
asVv,ie.,PcV.
e
O We define set-based multiobjective optimization as find-

ing a minimal element of the ordered gdt, <) where
V¥ is a set of admissible sets of solutions.

O=
c—X
C
3

J
Fig. 2. Representation of a preordered &t <) where X' consists of the We can summarize the elements of a set-based multiobjective

solutions{a, ..., m}. The optimal solutions are Migt', <) = {c, g,l,m}. optimization problem as follows:

{i,7} and {l, m} form two equivalence classes, i#= j andl = m. As . .
bZcandc < b, we finde < b. o A set of feasible solutiong’,

« a vector-valued objective functiofi: X — R",
o a setW¥ of all admissible set$’ of decision vectors with

B. Approximation Of The Pareto-optimal Set reP=zedk,

: ' . a preference relatiog on W.
As a preference relatiork defined above is usually not * 4P A

a total order on the feasible $etve will often have many In the light of the above discussion, the preference rela-
optimal solutions, i.e., many minimal elements that refteet tion < needs to satisfy the aforementioned two conditions,
different trade-offs among the objective functions. whereas the first one guarantees that we actually optimize
2 minimal elementu of an ordered sefs. <) set wih o the objective functions.a.nd the second one allows to add
satisfioe 1< o for Soman i the ot ther(u ’S:()Lse with a preorde=  npreferences of the decision maker. In the next section, we
3A binary relation< on a sets is called total, if(a < b) v (b < a) holds Will discuss the necessary properties of suitable preferen
forall a,b € S. relations and the concept of refinement.



C. Preference Relations

We will construct< in two successive steps. At first, a
general set-based preference relation (a set preferelatieng
< C ¥ x ¥ will be defined that isconformingto a solution-
based preference relatiod C X x X. This set preference
r6|a.t|(.)n will the.n be refined by. addmg. preferences of aFig. 4.  Representation of a preordered set of sets of solitib =
decision maker in order to possibly obtain a total order.&ory 4, g ¢, p, E, F, ¢, H}. The minimal sets are M{t¥, <) = {C, D, H}.
conformingset preference relation we require that no solution

is excluded that could be interesting to a decision maker. In

addition, if for each solutiorb € B there is some solution one representative of each equivalence clask’ofTherefore,

a € A which is at least as good, then we can safely say th@ preferences other than that containedkiris included so
A is at least as good as, or weakly preferable3to far.

From the above considerations, the definition of a con- For practical reasons, one may deal with sets of solutions
forming set-based preference relation follows directlyisi that have an upper bound on their size, i.e. if? € ¥,,, then
in accordance to the formulations used in [20], [40]. |P| < m. In this case, the properties of minimal elements of
Definition 2.2: Let be given a sett and a set¥ whose (¥,,,<) are somewhat more complex.
elements are subsets df, i.e., sets of solutions. Then the Let s denotes the number of equiva|ence classeg bf=
preference relations on ¥ conforms to=< on X if for all Min(x, <), i.e. the maximal number of solutions that are not
A, BeV equivalent. In the important case < s (a small set size), a
A<B & (YWbeB:(JacA:a=b)) set P is. an e!ement of.MiO\I/m,';ﬁ) (i.e. it i; a minimal set
_ _ of solutions) iff it containsm minimal solutions that are not
As an example, Fig. 3 shows three sets of solutidn® and equivalent, i.e., a minimal set of solutions may contain one
G. According to the above definition, we find thét< A and representative of each equivalence class only.
G < A. As setsB and G are incomparable. we hawg Il G.

ot Z

If we are interested in the solutions themselves, then we
may want to have the possibility to determine all solutions
that lead to the same value in objective space. They may well
be different in the decision space and therefore, be irtiages
o to a decision maker, see Fig. 2. This can be achieved by
replacing a given solution-based preference relatiorihat
A considers objective values only. Equivalent solutions kbad
to the same objective values should become incomparable. As
" h a result, solutions will be equivalent only if they are ideat
Fig. 3. Representation of a preordered set of sets of solfid, B, G} € in the decision space. We denote such a preference relation a

where=paris assumed to be the underlying solution-based preferetatéore =< with
We find B < A, G < AandB || G, i.e. B andG are incomparable. a<bo (a _ b) v (a = b)

>0Oo
Qe

_ Now, it \_N'” be showr_1 t_hat _the above preference relation ¥his new preference relation is a preorder as it is reflexive
indeed suitable for optimization. (a < a clearly holds) and transitive. The latter property can be
Theorem 2.3:The set preference relatiog as defined in shown as followsa < bAb < ¢ = ((a = b)V(a < b)) A((b=
Definition 2.2 is a preorder. )V (b=<c)= ((a=c)V(a<rc) = a=c Fig. 5 shows
Proof: A < Ais true asVa' € A : (Ja € A:a =< ad') the order graph i<y, is replaced byﬁpar in Fig. 2. As can
holds witha’ = a. Now we need to show thal < BA B < be seen, the equivalence classes are not present anymore and
C = A < C. Given an arbitrarye* € C. FromB < C we 4, j as well asl, m are now considered as incomparable.
know that3b* € B such thath* < ¢*. From A < B we know
that da* € A such thate* < b*. From the transitivity of<
we can conclude that* < ¢* holds. As a resultyc* € C :
(Ja* € A:a* < c*). [ |
Therefore, we can also represent the relations between the
sets of solutions in form of an acyclic graph whose nodes
correspond to sets of solutions and edges correspond to the
set preference relatiog. As an example, Fig. 4 represents
such a diagram. Note that the relation between the 4¢et8
and G corresponds exactly to the scenario shown in Fig. 3.
The minimal sets are M{w, <) = {C, D, H}.
The above definition of a conforming set-based preferent@. 5. Representation of the preordered set of solutiams fFig. 2 if <par
relation ensures, that each set in Min <) contains at least IS replaced by=pa.

4



Fig. 8. The left hand side shows the four different posgibsibetween two
F A F G B H nodes of the given preference relation: no edge (incompakasingle edge
(one is better than the other) and double edge (equival&hg.right hand
side shows the possibility in case of the refined relatiore @btted edges
C’ represent all possible changes of edgesiis refined to<ef.

Fig. 6. Including preference information may create a totalopder that

can be used for optimization. Here, three preference A, B < G and . . . .
H < C have been added to the preorder shown in Fig. 4. The resuitat o If a setis minimal in the refined order for some subset of

preorder is shown at the bottom. ¥, it should also be minimal in the original order in the
same subset. This way, we guarantee that we actually
optimize the objective functions with respect to some
preference relation, e.g. Pareto-dominance.

As a result of this discussion, we obtain the following defini
tion:
Definition 2.4: Given a setl. Then the preference relation

<ref refinesx if for all A, B € ¥ we have

Fig. 7. Including preference information arbitrarily may ate cycles in the
optimization. Here, two preferences < F' and F' < B have been added to (A < B) A (B A A) = (A <ref B) A (B Aref A)
the preorder shown in Fig. 4.

Examples of legal refinements are depicted in Fig. 8. Note,

o . ) that the refinement still needs to be a preorder.
The above definition of a preference relatieh derived . . .
If we use the notion of strictly better, we can also derive

from < ensures, that the minimal set of sets Iwn% con- - e
N . . L . .’“) the conditionA < B = A < B. In other words, if in the
tains sets with all possible combinations of minimal eleteen. ; : .

iven preference relation a sdtis strictly better than a s€®

g/le:tngf’ 2) 'Ml\i/rllczr; priglsne;?l/& V(\:lsn(t::igsitzatrii:i]ritafigllug:)lzlsm A < B) then it must be strictly bet.telr in the refined relatio.n,
. o too (A <ref B). As can be seen, refining a preference relation
provided thatm < |£7]. maintains existing strict preference relationships. 10 teets
are incomparable, i.ed || B < (A & B) A (B # A), then
D. Refinements additional edges can be inserted by the refinement. In case of

What remains to be done is to define the notion of refinduivalence, ie.d = B < (A 5 B) A (B < A), edges can
ment, as we need to have a possibility to include preferen@g removed.
information into a conforming preference relation. Thisywa As will be seen in the next section, some of the widely
we can include preference information of a decision makdr ansed preference relations are not refinements in the sense of
optimize towards a set which contains a preferred subsdt of @ef. 2.4, but satisfy a weaker condition.
minimal solutions, i.e., nondominated solutions in theeca  Definition 2.5: Given a setW®. Then the set preference
Pareto-dominance. The goal of such a refinement is twofol@lation <, weakly refines< if for all 4, B € U we have
At first, the given preorder should become "more total”. This
way, there are less incomparable sets of solutions which are (A B)A (B # A) = (A <ret B)
hard to deal with by any optimization method. Second, the

refinement will allow to explicitly take into account preéerce ) : : .
then A weakly dominates B in the refined preference relation,

information of a decision maker. . . .
. L i.e. A <t B. Therefore,A could be incomparable t@ in
An example is shown in Fig. 6, where three edges (prefefig 1efined preference relation, i.8.|ef B. In addition, if a

ence relations) have been added and the resulting ord&rg | oterence relation refines another one, it also weaklyesfin
total preqrder with the optimal set of SQIUt'OﬁE Jus_t adding it. Fig. 9 depicts all possibilities of a weak refinement. The
an ordgnng among incomparable s_olutlonS potentlallysaad weak refinement still needs to be a preorder.
cycles in the ordering as the resulting structure is no lomge The following hierarchical construction of refinement re-
preorder. Using such an approach in optimization will préve, ) 9 . .

lations will be used in later sections for several purposes.

convergence in general, see also Fig. 7. i . . - X
, _ _ At first, it allows to convert a given weak refinement into
For the refinement, we require the following properties: , refinement. This way, a larger class of available indisator

« The refinement should again be a preorder. and preference relations can be used. In addition, it pesval

In other words, if set A is strictly better than Bi(< B),



are preorders, so igg; if all relations<’, 1 < j < k are total
preorders, thers is a total preorder.

All set preference relationg’, k' < j < k can be arbitrary
preorders that may reflect additional preferences, see also
Fig. 10. Nevertheless, the resulting preference relatigrstill
refines<. The previously described hierarchical construction
of refinements will be applied in later sections of the paper
Fig. 9. The left hand side shows the four different posdibsibetween two to construct preference relations that are useful for aset)

nodes of the given preference relation: no edge (incompakasingle edge Multiobjective optimization.

(one is better than the other) and double edge (equival&hg.right hand

side shows the possibility in case of the weakly refined i@tatThe dotted refinement
edges represent all possible changes of edgesi# weakly refined to<ef.

S = (—\<1) R} %k/_la %kl7 %k’—l—l’ R 416)
simple method to add decision maker preference information
. . . . . weak preorder
to a given relation by adding an order to equivalent setss Thi refinement

way, a preorder can be made 'more total’. Finally, it enables

to refine a given preorder in a way that helps to speed up tkig. 10. Representation of the hierarchical constructiérrefinements
convergence of an optimization algorithm, e.g. by taking in @ccording to Theorem 2.7.

account also solutions that are worse than others in a sit. Th

way, the successful technique of non-dominated sorting can

be used in the context of set-based optimization. [1l. DESIGN OFPREFERENCERELATIONS USING QUALITY

The following construction resembles the concept of hierar INDICATORS
chy used in [17]; however, here (a) we are dealing with pref ynary Indicators

erence relations on sets and (b) the hierarchical congtruct o _
is different. Unary quality indicators are a possible means to construct

set preference relations that on the one hand are totalsorder
and on the other hand satisfy the refinement property, cf: Def
inition 2.4. They represent set quality measures that map ea
setA € U to a real numbef (A) € R. Given an indicatot,

one can define the corresponding preference relation as

Definition 2.6: Given a set¥ and a sequence& of k
preference relations oveb with S = (<!, <2,...,<%), the
preference relatioris associated witltt' is defined as follows.
Let A, B € ¥; then A x5 B if and only if 31 < ¢ < k such
that the following two conditions are satisfied:

i) (i<k A(A<iB)V (i=kA (A< B)) A< Bi=(I(4) < I(B)) @)
(i) Vi<j<i:(A<'BAB</A) where we assume that smaller indicator values stand foehigh
quality, in other words,A is as least as good aB if the

With this definition, we can derive the following proceduréndicator value of A is not larger than the one aB. By
to determined <s B for two setsA and B: construction, the preference relatiefy defined above is a

« Start from the first preference relation, ije= 1. Repeat preorder as it is reflexive af(4) < I(A) and transitive as
the following step: If A =/ B holds (4 and B are ((A) =I(B)A(B) < I(C)) = I(A) < I(C). Moreover,
equivalent), then increaseto point to the next relation 't iS @ total preorder becaugé(A) < I(5))V (I(B) < 1(A))
in the sequence if it exists. holds. Note that depepdmg on the choice of th.e |nd|catoc—fun

« If the final j points to the last preference relation= k), tion, there may be still sets that have equal indicator \&lue

then setd <s B < A <* B. Otherwise, sefl <g B <> i.e., they are indifferent with respect to the correspogdiat
A<k B A A ’ A preference relatios;. In this case, we may have equivalence

classes of sets, each one containing sets with the same in-

As described above, one of the main reasons to defingjigator value. For multiobjective optimization algoritarthat
sequence of preference relations is to upgrade a given wege indicators as their means of defining progress, sets with
refinement to a refinement. In addition, it would be desirablgentical indicator values pose additional difficultiesterms
to add arbitrary preorders to the sequesicé\s they need not of cyclic behavior and premature convergence. We will later
to be refinements of the given order, a decision maker can see how these problems can be circumvented by considering
freely add his preferences this way. The following theoremierarchies of indicators.
states the corresponding results. The proof is providedién t Clearly, not all possible indicator functions realize a re-

Appendix. finement of the orginal preference relation, e.g., weaktBare
Theorem 2.7:Given a sequence of preference relations agominance. The following theorem provides sufficient cendi

cording to Def. 2.6. Suppose there i$’a< k such thats* is  tions for weak refinements and refinements.

a refinement of a given preference relatigrand all relations

<7, 1 < j < k' are weak refinements ok. Then<s is a

refinement of<. Furthermore, if all relationsg’, 1 < j < k (A B)AN(B#£ A)= (I(A) <I(B))

Theorem 3.1:If a unary indicator! satisfies



for all A,B € WV, then the corresponding preference re- R1Z2 r
lation <, according to (1) weakly refines the preference 7 A
relation < according to Definition 2.5. If it holds that d m.r(A)
(A< B)A (B4 A) = (I(A) < I(B)) >
then %, refines< according to Definition 2.4. A—{defl N
Proof: Consider4, B € Q with (A < B) A(B £ A). If R={r}

I(A) < I(B), then alsoA =<, B according to (1). IfI(A) <
I(B), thenI(A) < I(B), but I(B) £ I(A), which implies Fig. 11. Graphical representation of the unary hypervolunaécator.
that A <, B and B %, A. [ |

In other words, ifA is strictly better thanB, i.e. A < B, then to a weak refinement or a refinement of the weak Pareto-
the indicator value oA must be not worse or must be smalledominance relation. That applies, for instance, to most of
than the one ofB in order to achieve a weak refinement othe diversity indicators proposed in the literature as ttey

a refinement, respectively. In practice, this global prgpernot fulfill the second condition in Theorem 3.2. Neverthsles
may be difficult to prove for a specific indicator since on¢hese indicators can be useful in combination with indicato
has to argue over all possible sets. Therefore, the follgwiinducing (weak) refinements as we will show in Section 1lI-D.
theorem provides sufficient and necessary conditions tfeat a

only based on the local behavior, i.e., when adding a singde Binary Indicators

element. The proof of the theorem is given in the Appendix. o ) o
In contrast to unary indicators, binary quality indicators

Theorem 3.2:Let I be a unary indicator ang a preference assign a real value to ordered pairs of sét§ B) with

relation on populations that itself conforms to a prefeean% B € . Assuming that smaller indicator values stand for

relation < on its elements (see Definition 2.2). The relatiopﬂ’gher quality, we can define for each binary indicafor
<, according to (1) refinex if the following two conditions Corresponding’ set preference relation as follows:

hold for all setsA € ¥ and solutions) with {b} € U:
1) If A< {b} thenI(AU{b}) = I(A). A1 B = (I(A B) < I(B,4)) @)
2) If A& {b} thenI(AU{b}) < I(A). Similarly to unary undicators, one can derive sufficientdion
For weak refinement one needs to replace the relaticoy tions for <, being a refinement respectively a weak refinement

< in the second condition. The second condition is necesséﬁ/the following theorem ShOYVS' o _
for <; being a refinement (in case ef) or weak refinement Theorem 3.3:Let I be a binary indicator that induces a
(in case of<) of <. binary relation<; on ¥ according to (2). Ifl satisfies

Using these two conditions, it is straight-forward to prove (AX B)A(B# A)= (I(A,B) <I(B,A))
that an indicator induces a refinement of the weak Pare O Al A B € . then the corresponding preference relation
dominance relation. The hypervolume indicator [38], [35 ’ ’ b 9p

for instance, gives the volume of the objective space weak< refines< accordmg o Def|n|t|op 2.4. Ik IS .rgplaced by
then=, weakly refinesx according to Definition 2.5.

dominated by a set of solutions with respect to a given set of : )
reference point& C Z. We define the corresponding indicator ~ Proof: Consider4, B € ¥ with (A < B) A (B £ A).

function as the negative voluméy(4) = —\(H(A,R)) f I(A,B) < I(B, A), then alsoA <, B according to (2). If
where \ denotes the Lebesgue measure Wit (4, R)) = (A, B) <I(B,A), thenI(A, B) < I(B, A), butI(B, A) £
Jan Lira,m)(2)dz and I(A, B), which implies thatd <, B and B %, A. [ |

Note that the relation; is not necessarily a preorder,
and this property needs to be shown for each specific in-
Now, it is easy to see that the volume is not affected whenewdicator separately. Obviously, if transitivity and refléxty
a weakly Pareto-dominated solution is added to a 4et are fulfilled, then<, is even a total preorder because either
Furthermore, any solutioh not weakly Pareto-dominated by(I(A,B) < I(B,A)) or (I(B,A) < I(A,B)) (or both).

A covers a part of the objective space not covereddbgnd However, some binary indicators violate transitivity,haltigh
therefore the indicator value fad U {b} is better (smaller) =<, (weakly) refinesx according to Definition 2.5.

than the one forA. These properties can easily be verified Consider for instance the coverage indicator [38] which
by looking at the example shown in Fig. 11; therefore, thgives the portion of solutions if8 to which a weakly prefer-
hypervolume indicator induces a refinement, see also [13ble solution in4 exists. This indicator represents a refinement
Furthermore, there are various other unary indicators lwhigs <pan but does not induce a preorder as transitivity cannot
induce weak refinements, e.g., the un&yandR; indicators  pe ensured [24].

[20] and the epsilon indicator [40]—the above conditions can Another example is the binary epsilon indicator [40]. Its

be used to show this, see also [24], [40] for a more deta'l%grresponding set preference relatign, according to (2) is

HAR) ={h|Ja€AIreR : fla) <h<r}

discussion. - a refinement ofspar. It is defined as follows:
Furthermore, the necessary condition can be used to prove .
that a particular indicator—when used alone—does not lead (A, B) = Tiax Fe(a,b)



where we use the distance function Accordingly, the question is how to refine a given set prefer-
Flab) = b ence relation that only depends on its minimal elements such
e(a,b) = f;l?gxn(fi(“) — fi(b)) that also non-minimal solutions are considered.

between two solutions andb. Informally speaking/.(A, B) This issue is strqngly related to fitness .a_ssignment in
denotes the minimum amount one needs to improve evdAPEAS. Pareto-dominance based MOEAs divide the popu-
objective value f;(a) of every solutiona € A such that Iatlonllnto doml_nance cIas;es Whlgh are usua!ly hleraqtlyl_c
the resulting set is weakly preferable #. We will not organgd. For instance, with dominance ranking [16] |rmH|v.
discuss further properties here and instead refer to [2@], [ Uals which are dominated by the same number of population
[40] for detailed reviews of binary indicators. The followj Members are grouped into one dominance class; with nondom-
counterexample shows that the binary epsilon indicatos dg@ated sorting [18], [30], the minimal elements are grouped
not lead to a preorder. We consider four solutians,c,d Nto thg first domlna_nce cIass_, and_ the ot.h_er .classes are
with the objective valuesf(a) = (0,8), f(b) = (1.5,5), determined by recursively applying this classificationesok

f(c) = (2.5,3) and f(d) = (4,0) in R2. Using the solution to the remaining popglanon members. The und_erlylng idea ca
setsA = {a,d}, B = {b,d} and C = {c,d}, we find be generallzed to arb_ltrary set prefere_n_ce_relanons_. iScethd,
(I.C,B) = 1 < I(B,C) = 2) = (C <, B) and We introduce the notion of a set partitioning function.
(I.(B,A) =15 < 1(A,B)=3) = (B <5. A) as well as  Definition 3.4: A set partitioning functiorpart is a function
(I.(A,C) =15 < I.(C,A) = 2.5) = (A <;. C). However, part : ¥ x N — W such for al A € ¥ a sequence
since I.(C,A) = 2.5 £ I.(A,C) = 1.5, it holds C £;. A (A1, Az,..., A;,...) of subsets is determined witd; :=
which contradicts transitivity. part(A,4) and it holds

In contrast to the negative results concerning the binary1l) vi <i<1[: A, C A
coverage and epsilon indicators, one can derive valid pinar 2) v; > 1 : A4, =
indicators from unary indicators. For example, for everamyn  3) V1 <i<j<[l+1: 4; D Aj

indicator/; a corresponding binary indicatds can be defined A set partitioning function indirectly createsnon-empty

as Ir(A,B) := L(B) — L(A); it is easy to show that artitions: theith partition P; is defined by the set difference
the property of (weak) refinement transfers from the unagv

indicator to the binary version. In a similar way, one coul etween theith and the(i + 1)th subset.P; = part(4, i) \

also usely(A, B) = I,(B) — I, (AU B) as in the case of the part(A,i+1). By construction, the induced partitions are dis-

binary hypervolume indicator, see, e.g., [34] joint. For instance, the following two set partitioning fitions
y hyp T _.g.., ' resemble the concepts of dominance rank and nondominated
On the other hand, every binary indicathr can be trans- sorting:

formed into a unary indicatof; by using a reference set
R: I,(A) := L,(A, R)*. Here, the refinement property is not rankpart(4,i):=={a€ A : [{be A:b=<a}|>i-1}

necessarily preserved, e.g., the unary versions of thenbina A ifi=1
epsilon indicators induce only weak refinements, while thef-ninpart(A i) = { minpart(A4,i — 1)\
original binary indicators induce refinements of the weak T ’

: ) Min(minpart(A,i — 1), <) else
Pareto-dominance relation. . . .
where = is the solution-based preference relation under con-

sideration. The second functiomjinpart, yields a partitioning

C. Refinement Through Set Partitioning such thatP, < P, < ... < P, holds; this is demonstrated in
The Pareto-dominance relatie,a, 0n sets is by definition Fig. 12.
insensitive to dominated solutions in a set, i.e., whether ¥ 4+ =z o

weakly dominates3 € ¥ only depends on the correspondin
minimal sets:A <par B < Min(A, <par) <par Min(B, =<par).
The same holds for set preference relations induced by
hypervolume indicator and other popular quality indicator
Nevertheless, preferred solutions may be of importance:

o When a Pareto set approximation is evaluated accord
to additional knowledge and preferences—which may |
hard to formalize and therefore may not be included

_ ; Fig. 12. lllustration of two set partitioning functions, reebased on weak
the search process—, then preferred solutions can bece Pareto-dominanceninpart (left) andrankpart (right). The light-shaded areas

interesting alternatives for a Qeci_sion make_‘r- _ stand for the first subsetsi() and the darkest areas representithesubsets
« When a set preference relation is used within a (evol(As left and A4 right). As to the resulting partitions, on the left hol&s <par

tionary) multiobjective optimizer to guide the searchsgit i £2 <par I’s, while on the rightP; <par P for 2 < i < 4, P3 <par I’4, and
. . . Py ||par P3 as well asPx ||par Ps.

crucial that preferred solutions are taken into account

for reasons of search efficiency.

Now, given a set partitioning functigsart one can construct
“4Usually, instead of a reference set of solutions a refersatef objective set preference relations that Only_ refer to SpeCI_fIC partitiof
vectors is given. This requires a slight modication of thedatbr. two setsA, B € V. By concatenating these relations, one then



obtains a sequence of relations that induces a set preterence To reduce computation effort: for instance, the hypervol-

relation according to Def. 2.6. ume indicator is expensive to compute; by using it only
Definition 3.5: Let < be a set preference relation apatt occasionally at the end of a sequence of indicators, a
a set partitioning function. For a fixell the partition-based ~ considerable amount of computation time may be saved.
extension of< is defined as the relatiog?®tl!l .= < ¢ whereS » To include heuristic information to guide the search: a
is the SeqUENCES Lure: <Zars - - - » <bare) OF Preference relations set preferencg reIatlo.n thaF reflectg the user prefere.nces
with not necessarily provides information for an effective
. search; therefore, it may be augmented by optimization-
A< B & (part(A,d) \ part(4,i+ 1)) < related aspects like diversity through additional dedidat
(part(B,1) \ part(B,i+ 1)) indicators.

In the following, we present some examples for combined
?et preference relations that illustrate different agpion
scenarios. All of these relations are refinements of the set
preference relatiospar.

A partition-based extension of a set preference relatioa-

sically means tha¥ is successively applied to the hierarchy o

partitions defined by the corresponding set partition fiamct

Given A, B € V, first the two first partitions ofA and B are

compared based og; if the comparison yields equivalence, 1) The first combination is based on the unary epsilon

then the two second partitions are compared and so fortls. Thi  indicator I.; with a reference seR in objective space

principle reflects the general fitness assignment strategy u which is defined ad.;(A) = E(A, R) with

in most MOEAS. E(A, R) = max min €(a,r)
One important requirement for such a partition-based exten TER a€A

sion is thatPl!l refines<. Provided thats only depends on where

the minimal elements in the sets, baotinkpart and minpart )

induce refinements. The argument is simply tadf,, is the e(a,r) = max{fi(a) —ri | L <i<n}

same as< because the first partition corresponds for both

function§ to the set of minimal elements; that mea{fgrt Since this indicator induces only a weak refinement of
is a refinement ofx. Furthermore, allx’,,, are preorders.

; Spar the weak Pareto-dominance relatiefya, we will use
Applying Theorem 2.7 leads to the above statement. FOr e nypervolumen indicator to distinguish between sets
minpart, it can even be shown that™""*!] is a refinement indifferent with respect,,. The resulting set preference
of mineertl] for all 1 > 0. relation is denoted as.; x; it is a refinement ofpar.

In the following, we will mainly consider the set partition- 2) The second combination uses tRg indicator proposed
ing function minpart and refer to it as minimum elements in [20] for which the following definition is used here:
partitioning (or nondominated sorting in the case of Pareto . N
dominance). It induces a natural partitioning into sets of  Ipy(A) = Ry(A,R) = 2oaea A R) —u (A f(4))
minimal elements where the partitions are linearly ordered Al
according to strict preferability. For reasons of simpicive where the function,* is a utility function based on the
may omit thel when refering to the partition-extended relation weighted Tchebycheff function
<minpart[l]- jt is usually set equal to the population size of the

* . *
; ; uw*(N\,T) = —min max \;|z} — z;
evolutionary algorithm used. (A T) T 1955, e il

and r; is the ith component of the objective vector

and A is a set of weight vectorss € R", R C Z
D. Combined Preference Relations is a reference set, and® € Z is a reference point.
In this paper, we will setR = {z*}. Also the R,
indicator provides only a weak refinement; as before,
the hypervolume indicator is added in order to achieve
a refinement. This set preference relation will be denoted
as<pr2.H-
The next set preference relation can be regarded as
a variation of the above relatiogro ;7. It allows a
detailed modeling of preferences by means of a set of
reference points(Y) e R with individual scaling factors
p™ and individual sets of weight vectors(?). As a
starting point, we define the generalized epsilon-distance
between a solutiom € X and a reference pointe Z
as

The issue of preferred (dominated) solutions in aset ¥
cannot only be addressed by means of set partitioning func-
tions, but also by using multiple indicators in sequence. Fo
instance, one could use the hypervolumen indicdtgr (to
assess the minimal elements #) in combination with a )
diversity indicator I, (to assess the non-minimal elements
in A); according to Theorem 2.7, the set preference relation
<m,p given by the sequendes s, <p) is a proper refinement
of weak Pareto-dominance sincgy is a refinement (see
above) andkp is a preorder. Thus, such combinations can be
useful to increase the sensitivity of a relation (meanirag the
number of unidirectional edge$ < B is increased); however,
there are several further reasons for combining indicators Fj(a, r) = max A - (fi(a) — r2)
« To embed indicators which induce only a weak refine- 1sizn
ment or no refinement at all into set preference relations  with the weight vectorA € R™ where\; > 0 for 1 <
representing refinements. 1 < n. In contrast to the usual epsilon-distance given, the



4)

coordinates of the objective space are weighted which  The I indicator resembles the generational distance

allows for choosing a preference direction. measure proposed in [32] ardg@ resembles the nearest
The P indicator for a single reference pointcan now neighbor niching mechanism in SPEA2 [37]. We will
be described as refer to the overall set preference relation g ¢ p.
In(Ar A) = Z min Fj(a,r) According to Theorem 2.7% ¢, p is a refinement of
acA 4par-

A€A

whereA is a potentially large set of different weight vec- It is worth mentioning that it ig also possible to combine
tors. The minimum operator selects for each weight ve-non-total preorder such ag,r with total orders differently

tor A the solutiona with minimal generalized epsilon- {© the principle suggested in Def. 2.6. As has been pointed
distance. Finally, all these distances are summed up.9Ht: See €.g. Fig. 7, convergence may not be achievable if
order to achieve a broad distribution of solutions an@l OPtimization is not based on a preorder or if the under-
a sensitive indicator, the cardinality ¢f\| should be !ying preorder is not a refinement. The following example
large, i.e., larger than the expected number of minimuffiStrates why density-based MOEAs such as NSGA-Il and
elements ind. For exampleA may contain a large set OfSPEAlehow gycllc behgvpr, see [27],in parugular, whes th
random vectors on a unit sphere, i.e., vectors with leng@@Pulation mainly contains incomparable solutions, evgen

1. One may also scale the weight vectors to differe€ing close to the trade-off surface.

lengths in order to express the preference for an unequaFor instance, lef be a unary indicator, then one may define
density of solutions. a set preference relatiogp,,; as follows with A, B € ¥:

If we have a set of reference point$”? € R with

individual sets of weight vectors(”) and scaling factors A <parr B < (A <par B) V ((A|[par B) A (A <1 B))

p® > 0, we can simply add the individuaP indicator

values as follows Now, consider a unary diversity indicator, e.gg as defined

4 , _ above; this type of indicator usually does not induce a weak
Ip(A)= Y p! - Ip(A,r® AD) refinement. The resulting set preference relatign;; is not
r(WeR a proper preorder as Fig. 13 demonstrates: transitivity is
Of course, we may choose equal seét&) for each Violated, i.e,A <par; B and B <pars €, but A #pars C.
reference point. In this case, the scaling facigfs can 1he relation graph oKpa;r contains cycles. However, if
be used to give preference to specific reference point§t.ands for the h)'/pervollur"nen mdmgtb;q, thgn ﬁpaﬂf Is a set
The P indicator as defined above provides only preference relation ref|n|ng<par; this combination could be
weak refinement; as before, the hypervolume indicathFeful to reduce computation effort.
is added in order to achieve a refinement. This set IRy
preference relation will be denoted as- . 2
The previous three indicator combinations will be used .
together with a set partitioning function. To demonstrate o, o
that the partitioning can also be accomplished by indi- Ao 25.C
cators, we propose the following sequence of indicators s
S = (Ig,Ic,Ip) where I measures the largest dis- o
tance of a solution to the closest minimal element in a —>
set and/p reflects the diversity of the solutions in the fi
objective space. The latter two indicators, which botplg_ 13. Three sets are shown in the objective space wHergpar B,

do not induce weak refinements afa,, are defined as Aj|,. ¢ and B ||par C. Using a combination of Pareto-dominance and diver-
follows: sity results in a cyclic relationspa,; With A <par; B, B <par,;r C, and

C ~par, T A.
Ic(A) = i dist b
o(A) =max min  dist(f(a), (b))
and
I 1 1 IV. MULTIOBJECTIVE OPTIMIZATION USING SET
p(4) = max <nn1(a,A\{a}) + nng(a,A\{a})> PREFERENCERELATIONS
with o The previous two sections discussed how to design set
nn1(a, B) = min dist(f(a), £(b)) preference relations so that the concept of Pareto domgnanc
) ‘ is preserved while different types of user preferences are
nna(a, B) = OB beB\fe} dist(f(a), f()) included. This section presents a corresponding genedaliz

multiobjective optimizer that makes use of such set prefer-
: o ence relations in order to search for promising solutios.set
secor_1d smallest qlstancelmﬂg any 5(_)Iut|on |_nB. For_ Section IV-A describes the algorithm, while Section IV-B
the distance functiolist(=", =%), Euclidean distance is yiso sses theoretical aspects of the algorithm, in pdaticu
used here, i.e.dist(z',2%) = \/Zlgign(zf —27)% convergence properties.

wherenn(a, B) gives the smallest andns(a, B) the
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A. SPAM - Set PreferenceAlgorithm for Multiobjective Op- Algorithm 2 Random Set Mutation
timization 1: procedure randomSetMutatiofP)
2: randomly choose,...,r, € X with r; # r;
3 randomly selecpy, ..., p, from P with p; # p;

The main part of the Set Preference Algorithm for Mul- % Pl P\{p1,- o} U{ry, e
tiobjective Optimization (SPAM) is given by Algorithm 1. 5 retumn P’
It resembles a standard hill climber with the differencet tha
two new elements of the search spakeare created using Algorithm 3 Heuristic Set Mutation
two types of mutation operators. The termination critegan 1. procedure heuristicSetMutatiofP)

be any standard stopping condition like maximum number op. generater(,...,r, € X based onP
iterations or no improvement over a given number of iteregjo 3. P"— PU{ry,...,m:}

we will not discuss this critical issue here in detail andeasl 4. while |P”| > m do

refer to the corresponding literature, see e.g. [7]. Howdoe . for all « € P” do

the convergence proof provided later, we will assume that thg: 5, « fitnessAssignment(a, P")
algorithm loops forever, i.e., the termination criterieFalse . choosep € P with §, = minge pr 0,

Algorithm 1 first creates a random initial sét ¢ ¥,, s P" — P"\ {p}
of sizem and then employs a random mutation operator tQ).  raturn P”
generate another sgt’. This operator should be designed
such that every element i could be possibly generated,

i.e., the neighborhood is in principle the entire searctcspa. 5 . - . .
In practice, the operator will usually have little effect tire in P.> Algorithm 3 (heuristic set mutation) generalizes the

optimization process; however, its property of exhausiss iterative truncation _procedures us_ed in NSGA-II [8], SPEA2
is important from a ,theoreticail perspective, in particui@ar 371, _and others. First newlsolut|ons are created.ba.sed. on
show convergence, cf. Section IV-B, ' P; this corresponds _to matmg_ sglec_tlon plus vanaupp in a
e ) ) standard MOEA. While the variation is problem-specific, for
Second, a heuristic mutation operator is employed. Thigating selection either uniform random selection (usedhén t
operator mimics the mating selection, variation, and @mir s|10wing) or fitness-based selection can be used (using the
mental selection steps as used in most MOEAs. The gqghess values computed by Algorithm 4 resp. 5). Then, these
of this operator is to create a third sét” € W that is . golutions are added t#, and finally the resulting set of
better thanP in the context of a predefined set preferenc§26m+k is iteratively truncated to size: by removing the
relation <. However, since it is heuristic it cannot guarantegg| tion with the worst fitness values in each step. Here, the
to improve P; there may be situations where it is not ablginess value of € P reflects the loss in quality for the entire
to escape local optima of the landscape of the underlying 3@k p if  is deleted: the lower the fitness, the larger the loss.
problem. Finally,P is replaced byP”, if the latter is weakly To estimate how useful a particular solutiane P is
preferable to the former; otherwisg, is either replaced by’ Algorithm 4 compares all setﬁp C P with | 4] = |P| - 1’

(if P’ < P) or remains unchanged. Note that in the last ste{) . . .
- o o P using the predefined set preference relatiarirhe
weak preferability £) and not preferability €) needs to be fewe> {S‘;}:{SAV gre wgakly preferablré @\ {a} thgobetter

;ﬁirlzgjjsregf.m[;irder to allow the algorithm to cross Iandecaﬁ]e setP \_{a} and the_less important ig. This procedure
' : _ has a runtime complexity o©((m + k)g), where g stands
For the mutation operators, we propose Algorithms 2 and @ the runtime needed to compute the preference relation
Algorithm 2 (random set mutation) randomly choosesle-  ¢omparisons which usually dependssn:- k and the number
cision vectors from¥’ and uses them to repladeelements f gpjective functions. If unary indicators are used, themefis
assignment can be done faster. Algorithm 5 gives an example
where< is defined by a single unary indicatér the loss in
quality is simply the difference in the indicator value cadis
Algorithm 1 SPAM Main Loop by the removal of.. The last scheme is used, e.g., in [25], [14],
[35], [22] in combination with the hypervolume indicator;
Fig. 14 illustrates the working principles.

Require: set preference relatiog
1: generate initial setP? of size m, i.e., randomly choose

Ae VU, and setP «— A Finally, note that Algorithm 3 is heuristic in nature, in
2: while termination criterion not fulfillecdo particular the truncation method realized by the while labp
3 P’ — randomSetMutatiofP) Step 4. Before entering the loop at Step™, contains exactly
4 P" — heuristicSetMutatiof) m + k solutions. Ideally, that subset C P” with |A| = m
5: if P” < P then would be chosen that is weakly preferred by the lowest number
6 P~ p of m-element subsetsi; C P”. However, computing the
7 else if P’ < P then
8 P~ P 5Note that for both mutation operators the saknes used here, although
o return P they can be chosen independently. The safe vergioa (n) for the random

mutation operator means that a random walk is carried ou¥on
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Algorithm 4 Fitness Assignment (General Version) ensured that the resulting preorders are still refinemaeits,

1: procedure fitnessAssignmefat, P") Theorem 3.2. The issue of sensitivity led to the idea of set

2: 0 < 0 partitionings as presented in Section I1I-C—only this esten

3 for all b € P” do makes the use of single quality indicators for search effect

4: if P\ {b} = P"\ {a} then This discussion illustrates why the proper design =ofis

5: 0g < 0q + 1 crucial for SPAM and any other set-oriented multiobjective

6 return J, optimizer and why the corresponding theoretical founctetio
presented in Sections Il and Il are of high importance in

Algorithm 5 Fitness Assignment (Unary Indicator Version) practice. _

1: procedure fitnessAssigmefit, P”) _ Next, we WI|.| focus on the theoretical convergence proper-

20§, — I(P"\ {a}) — I(P") ties of SPAM, e, wheth(_ar anq gn_der wha}t cqndmons it con-

3 return 4, verges to the optimum given infinite running time resources.

Although convergence alone does not necessarily imply that
the algorithm is fast and efficient in practice, it is an intpot

. . . . Oand desirable property; in the EMO field, several convergenc
optimal subsetA4 is usually computationally expensive an lesults are available to date, most notably [19], [29], [233]
therefore the iterative truncation procedure represegteedy ' y ' ' '

strategy to obtain a good approximation dfin reasonable Here, we are interested in the properties of the set mutation
time. operators that guarantee convergence of SPAM; in particula
we will investigate the influence of the parameterthat
determines the number of newly created solutions per set
B. Convergence Results mutation. Convergence in this paper refers to the limit bigha

The main advantage of SPAM, as presented above, whh an optimization algorithm. The line of arguments follows
respect to existing multiobjective randomized search -algBiost closely the investigations of Rudolph et al. in [29].
rithms is its flexibility. In principle, it can be used withyan In order to simplify the discussion, let us suppose that the
set relation; however, it will only be effective when the setet of solutionsY is finite and that only random set mutation
preference relatiorg is reasonably designed as discussed ia used, i.e.heuristicSetMutatiofi?) always returns® for the
Sections Il and lII. time being. In addition, we have available a preferenceiczla

First, it is important that< represents a preorder and as ©n the_seIsIfm of sets containing not more than solutions,
refinement according to Definition 2.4. These propertiesiens S€€ Section 1.
that (i) no cyclic behavior as reported for NSGA-Il and SPEA2 Then, SPAM is called convergent, if the probability that
in [27] can occur and that (ii) under mild assumptions SPAlhe resulting setP is not minimal, i.e.P ¢ Min(¥,,, <),
actually converges to an optimal subset of the Pareto-aptinapproaches) for N — oo where N denotes the number of
set (see below). To our best knowledge, the latter propexsy hterations of the while loop in Algorithm 1. If we can now
only been shown for theory-oriented algorithms, e.g., [19yuarantee the convergence of SPAM, then this simple hill-
[29], but not for popular multiobjective evolutionary algo climbing strategy would be able to solve any multiobjective
rithms used in practice. The construction principle présgn optimization problem as stated in Section II-B in case otdini
in Definition 2.6 provides a tool to design preorders anlut unbounded computation time.
refinements as shown by Theorem 2.7. Furthermershould  Gjven W,,, let us consider the underlying set preference
be a total preorder and it should be highly sensitive to cangelation < and in particular the corresponding relation graph
in the sets in order to enable SPAM to search efficiently. @here there is an edget, B) for each paird, B € ¥,, with
total set preference relation guarantees that SPAM has full 4 B As < is a preorder, there is a directed path from
information whether to accept or to reject a newly generateghy minimal element’* € Min(¥,,, <) to any nodeP. In
set. Section lIl explains in detail how total preorders cagrder to be able to reach such an optimal set using SPAM, the
be constructed using quality indicators and how it can Réosen preference relation as well as the set mutation tmpera
need to satisfy certain constraints. They both must enaigle s
ot Z r paths under the condition that each set mutation replaces at
l_——a most k£ elements from the current sét in order to generate

Oy P’. Note that the optimizer traverses a path in reverse diecti
d a9 as there is an edge from to B if A < B.

00 oj_df Let (P!, P2, ...,_Pi) denote the sequence of sets generated
f by SPAM whereP’ denotes the contents éf at the beginning
> of the ith iteration of the while loop in Algorithm 1. In
fi addition,r? andp’, 1 < j < k denote the elements randomly
Fig. 14. The figure depicts the fitness values computed acuprth ~Created resp. selected for removal in Algorithm 2. In paféc

Algorithms 4 and 5 when using the hypervolume indicator. Thatlshaded P is mutated by removingi, ..., pi and adding-i, ..., r%.

area stands for the volume of the entire three-elements sefjatk shaded - . L
areas reflects the volume contributions (fitness values)eofiigtinct solutions.  D€finition 4.1: Let us now suppose that for any initial set
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P! there exists a numbe¥ of iterations anqogl and r; 1< Proof: The set preference relatieais a preorder. There-
j <k, 1<1i< N such that (i)PN € Min(¥,,,<) and (i) fore, there exists a path from any initial set to an optimal
Pitl < Piforall 1 <i< N —1. Then we say that the givenset PV in Def. 4.1. The intermediate populatio#?, ..., PV
set preference relatiog is k-greedy. can be generated by exchanging at mostalolutions from

The above property states that if the given set prefererfd@e Set to the next. As the set preference relation-greedy,
relation < is k-greedy, then there exists a sequence of sdf elementg; andrj can be chosen correspondingly. m
with cardinality not larger thamn that starts from any set in  The last theorem leads to the fact that SPAM can be used
¥,,, and ends at an optimal setihwhere at mosk elements with any set preference relation resp. quality indicatduiting
differ from one set to the next. Therefore, this path could preorder if we usé = m. Whereas this statement may be of
be found by SPAM, if theandomSetMutatioroperator does theoretical value, SPAM will be of no practical use for large
exactly the requested replacements of elements. In orderiftonly the randomSetMutatiomperator is applied; the reason
make this argument more formal, we need to define propertieghat the probability to determine a better set by exchamgi
of the set mutation operator. For example, if never elemenndomly a large number of elements will be very small.
of some optimal seP* are generated, this set could never b&herefore, theheursticSetMutatioroperator is used in order
reached. to obtain improved sets with a high probability; howeveis th

Definition 4.2: Given anyk different solutionss; € X and operatotin generalis not exhaustive, i._e., it may not possible to
any k different solutionsp; in P wherel < j < k. If for an  follow a path to an optimal se®* € Min(¥,,,, <). Therefore,
execution of therandomSetMutatiorperator the probability if the usedrandomSetMutatioroperator is exhaustive, i.e. it
is larger than zero that (i) the selected elements saisy 5, generates any p055|bVe}ne|ghbo_r with a flmte probability,
and (ii) the randomly generated elements satisfy=s; for then SPAM converges to an optimal solution.
all 1 < j <k, then therandomSetMutatiomperator is called  Finally, one may ask whether smaller values forwith
exhaustive. k < m are possible while still guaranteeing convergence.

In other words, an exhaustivandomSetMutatiomperator This may be desirable from a practical perspective since the
replaces any: elements of the current sétby anyk elements generatlon of new solutions i@ would thereby be tighter
from X with a finite probability. Therefore, if the set mutationfinked to the update of’; several indicator-based MOEAs
operator is concatenated sufficiently often for an arbjtraP@sically use set mutation operators whérequals1 [14],
initial set (e.g.randomSetMutatioffandomSetMutatiof?))), [22]- The answer clearly depends on the set preferencearelat
then any possible set if¥,,, can be generated. Based on thegnder consideration. It can be shown that the set preference
above results and using a straightforward extension of tiré w rélations induced by the epsilon indicator and the hypeive!
previously done in [29], we obtain the following theorem: indicator are in general ndtgreedy; the proofs can be found

Theorem 4.3:If the given set preference relatiog is in the appendix.
k-greedy and the givemandomSetMutatioroperator is ex-  Corollary 4.5: The set preference relatiog,.; induced by
haustive, then the SPAM optimization algorithm convergdf® unary epsilon indicatok, is not1-greedy.
provided that the while-loop never terminates. Corollary 4.6: The set preference relatiory induced by

Proof: Consider a graph whose nodes correspond to it hypervolume indicatofy is not 1-greedy.
sets@Q C X with size |Q| = m and the edges of which cor- That means whenever these indicators are used within a set
respond to all possible executions of ttemdomSetMutation preference relation incorporated in SPAM, then there asesa
operator. If we remove all edges, j) with @7 £ Q' then where SPAM will not convergence i = 1; this also holds
each path in the graph corresponds to a feasible executiorfafany other MOEA that replaces only a single solution in the
SPAM. If the set preference relatiog is k-greedy and the current population and is based on these indicators. Whether
randomSetMutatioroperator is exhaustive, then there existether values fok with 1 < k& < m are sufficient to guarantee
a path with finite probability from any node to a node witttonvergence for these indicators is an open research issue.
Q € Min(¥,,,, ).

Because of the finiteness af, SPAM will not converge iff

for some execution we have’ = P*+! andP* < P*! for all V. EXPERIMENTAL VALIDATION
1 > K with some constank and for some minimal element

P* € Min(¥,,,<). During such an execution, a subset of Thi tion | tiqates th ticability of th
nodes is visited infinitely often. Let us now suppose that gPA IS section investigates the practicability of the prambs
gproach. The main questions are: (i) can different user

does not converge. Then none of the infinitely visited nodé& . ;
has an outgoing edgé, j) with Q7 < Q'. This contradicts preferences be expressed in terms of set preference rsatio

the assumption that there exists a path with finite proh&bili(”) Is it feasible to use a general search algorithm for taaby

. . : t preference relations, i.e., is SPAM effective in finding
from any node to an optimal nodg with Min(¥,,,, <). se . .
y P @ Qe (&, <) appropriate sets, and (iii) how well are set preferenceiogla

_ o suited to guide the optimization process? However, theqeap
Theorem 4.4:Every set preference relatiog is m-greedy s not to carry out a performance comparison of SPAM to

where:m denotes the maximum size of the sets of solutiongyisiing MOEAs:; the separation of user preferences anaisear
i.e., ¥,, is the universe of the sets under consideration. algorithm is the focus of our study.
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TABLE I
OVERVIEW OF THE SET PREFERENCE RELATIONS USED IN THE EXPERIMEAL STUDIES; FOR DETAILS, SEESECTION III.

<At hypervolume indicatod ;; with reference point12, 12) resp.(12, 12,12, 12, 12) and minimum elements partitioning
i

<p7Palt preference-based quality indicaths with two reference points(!) = (0.2, 0.9) resp.(0.2,0.9,0.9,0.9,0.9), 7(?) = (0.8,0.5) resp.

(0.8,0.5,0.5,0.5,0.5) with scaling factorsp(!) = 1/3 and p(2) = 2/3, followed by the hypervolume indicatdry with reference
point (12,12) resp.(12,12,12,12,12); in addition, minimum elements partitioning is used. Fer, the samel, 000 weights\ are
used for all reference points; the weights are (once) umfprrandomly drawn from{(A1,...,A\n) € R™ | \; > 0for1 < <
n, H(Alv .- 7)‘71)“ = 1}

<H,c,p unary hypervolume indicatofy with reference poin{(12,12) resp.(12,12,12,12,12) followed by the distance-to-front indicator
I (maximum distance of any solution to the closest front membet)the diversity indicatod , (kth-nearest neighbor approach)

<paP" Ry indicator Iro with reference seB = {(0,0)} and A = {(0,1),(0.01,0.99),...,(0.3,0.7),(0.7,0.3),(0.71,0.29),...,(1,0)} in

’ the case of two objectiveg§A| = 62), followed by hypervolume indicataf;; with reference point12, 12) resp.(12,12,12,12,12);
in addition, minimum elements partitioning is used
minpart

Se1. 11 unary (additive) epsilon indicatofe; with reference sel3 = {(k - 0.002,0.8 — k - 0.004) ; £ € {0,1,...,100}} resp.B =
’ {(k-0.002,0.8 — k - 0.004, 0.8 — k - 0.004,0.8 — k - 0.004,0.8 — k - 0.004) ; k € {0,1,...,100}}, followed by the hypervolume
indicator Iy with reference poin{12,12) resp.(12, 12, 12,12, 12); in addition, minimum elements partitioning is used
<poPet preference-based quality indicatbp with reference point-(1) = (0,0) resp.(0,0,0,0,0), followed by the hypervolume indicator
: Iy with reference poinf12,12) resp.(12,12,12,12, 12); in addition, minimum elements partitioning is used. The samighte\

as inxpP" are used byl p.

<7 diversity indicator/p (kth-nearest neighbor approach) combined with minimum elemeantitipning
A. Comparison Methodology of cases where OB yields a better outcome. The bigges

. ) ) compared toU’, the better algorithm OA is geared towards
In the following, we consider different set preference felane test relations regarding OB.

tions for integration in SPAM; they have been discussed in : .

. , . As long as the entirety of the considered sets can be
Section 1l and are listed in Table II. All of them except ofre arded as a large sample (eaf),runs per algorithm), one
the last one are refinements of the set dominance relatign 9 9 P ’ P 9 '

minpart can use the one-tailed normal approximation to calculage th

the relation<, Is just used for the purpose of m'm'Ck'ngs'ﬁnificance of the test statisti€s, correcting the variance for

the behavior of dominance and density based MOEAs sug s. Furthermore, multiple testing issues need to be taken

a8$ NSngI! AgngBSPEAZ. Aas ! efg]renge allgonthms', NSGAl\- ccount when comparing multiple algorithms with each qgther
[8] an [36] are used; in the visual comparisons asﬂere, the significance levels are Bonferroni corrected.

SPEA2 [37] is included. . . . .
| der t ke stat ts about th Hocti inally, the SPAM implementation used for the following
n order 10 make statements about the eflectiveness %erimental studies does not include the random set roatati

g‘e atlgontthms con'S|d(:.red, or.1teh needsdtc: a‘tssess the gfeherr%? rator, i.e., lines 3, 7, and 8 in Alg. 1 were omitted.
areto set approximations with regard 1o the Set prelerengy yoaq0n s that every set comparison is computation-

\r/?llﬁlon uUndter f(:n&deratlon. Welt_SlIJggesi[t the usefof the P‘fla%rﬂy expensive—especially when the hypervolume indicagor i
vhitney o test 1o compare multiple outcomes ol on€ algQy,;,\yed—and that in practice it is extremely unlikely that
rithm with multiple outcomes of another algorithm. This IS2andom set mutation according to Alg. 2 yields a set that is

possible s;nfel all se(; pr(?fetrrt]ancg relztartllons Consﬁereddm.m tsuperior to the one generated by the heuristic set mutation
paper are total preorders, onerwise, the approach prapnse , ,q 44 Nevertheless, a set mutation operator that meipte

[26] can be applied. Thereby, one can obtain statementst ab generate any set i is important to guarantee theoretical

Whethe_r_ either algorithm yields _significantly better résuibr convergence. One may think of more effective operators than
a specified set preference relation. Alg. 2 which preserves the convergence property; however,

In detail, the statistical testing is carried as follows.- Ashis topic is subject to future work and not investigatedhiis t
suming two optimizers OA and OB, first all Pareto-set agyaper.

proximations generated by OA are pairwisely compared to
all Pareto-set approximations generated by OB. If, 0.,
runs have been performed for each algorithm, then ove
900 comparisons are made. Now, ldtand B be two Pareto-
set approximations resulting from OA respectively OB; the
we consider setd as better than seB with respect to the ) " minpart

set preference relatior, if A < B holds. By counting the gengra_uon (US'n%Pl,H and <m,p) the set produced by
number of comparisons where the set of OA is better thgqurlstlc mutation is worse than the current set, i.e., thieeoit

the corresponding set of OB, one obtains the test statitics set is not replaced. One can expect and observe, though, that

doing the same for OB give&’ which reflects the number this situation arises especially when _belng close to or on
the Pareto front (all set members are incomparable) and less

oTh oht binat d for the five-obiect blersta frequently at the early phase of the search process. Overall
e weight combinations used for the five-objective pro ances L . .
are provided in the appendix; in this case, the considertderece set was no Slgmflcant differences between the qua“ty of the outesm

B ={(0,0,0,0,0)} could be measured when running SPAM with and without the
“With parameters: = 0.05 andp = 1.1.

One may also ask whether the if statement at line 5 of Alg. 1
is, actually of practical relevance. Testing SPAM with three
résgt preference relations, namekp %", <p1ha, and <. p,

on a three-objective DTLZ5 probl’em instance indicates that

"h average every0th generation (usin%gg‘f}?”) and 100th
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check at line 5; in average, the computation time increasesbpect to< 4. Ideally, for every setd generated by SPAM-

by 12% (x5 and<715") and8% (xm,p). Nevertheless, A and every setB generated by SPAM-B, it would hold

we recommend to keep this additional check because it rep-<x4 B or evenA <4 B. Clearly, this describes an ideal

resents a crucial aspect of a hill climber and prevents mgclisitutation. A set preference relation that is well suited fo

behavior which is theoretically possible whenever words seepresenting certain preferences may not be well suited for

are accepted. search per se, cf. Section IlI-D; for instance, when using a
single indicator such as the hypervolume indicator refingme

through set partitioning is important for effective search

To this end, we statistically compare all algorithmic vat&a

Tglis section Fr%/'irdLezsz ex%eg¢ﬁ;;al 1r2esul_t; fzr t.W.O ®lith each other with respect to the six refinements listed in
problems, namely an [12] witkO decision Table Il. Note that set partitioning is only used for searubt,

var|§bles_for2 and 5 quect|\(es. On the one hand,. we WIIIfor the comparisons. The outcomes of the pairwise compar-
provide visual comparisons in order to verify to which eXeNsnns after Bonferroni correction are given in Table V. hvit

the formalized user preferences havg been.achie'ved'. On & fy few exceptions, the above hypothesis is confirmed:gusin
other hand, statl_st|cal tEStS. are applu_ad_to mvgstlgatmrwh 4 In SPAM yields the best Pareto-set approximations with
search strategy is best suited to optimize which user pr?i'gard to<.4, independently of the problem and the number

erences; for each optlmlzgjsp have pegn garrled OI_H' Theof objectives under consideration. These results are yighl
general parameters used in the optimization algorithms %riﬁnificant at a significance level 6£001

given in Table III. . _ L .
Concerning the exceptions, first it can be noticed that there
TABLE Il is no significant difference betwee!;"™" and< ;. c.p when
PARAMETER SETTINGS USED IN SECTION/-B used in SPAM—both times, the hypervolume indicator value
is optimized. This actually confirms the assumption that set

B. Results

Parameter Value P :

Set size / population size: 207 50 partitioning can be replaced by a corresponding sequence of
newly created solutions / offspring individuals _20*,50* quality indicators. Second, the algorithm based on the set
”mUuTeggnOfr';%f:Si‘I’i?S/ generations %0 preference relations 5y using thelp indicator with the
swap pm{)’abmty Y 0.5 origin as reference point performs worse than SPAM with
recombination probability 1 <" on DTL2; this is not suprising as it actually can
n-mutation 20 be regarded as an approximation of the hypervolume-based
n-recombination 20 . .- .. - minpart
symmetric recombination false relation. However, it is suprising that SPAM witk "/, is
scaling false outperformed by IBEA on both DTLZ2 and DTLZ5; it seems
tournament size 2 that IBEA is more effective in obtaining a well-distributed
mating selection uniform

* visual comparision, ** statistical testing

front. This result indicates the sensitivity efpy 5 with

respect to the distribution and the number of the weight com-
1) Visual comparisons:Figure 15 shows the Pareto-sePinations chosen. The problem can be resolved by selecting a
approximations generated by SPAM with the aforementionéger number of weights as discussed in Section IlI-D.
set preference relations and by the reference algorithms foTo see how the differences develop over the course of time,
the biobjective DTLZ2 problem. The plots well reflect thd=ig. 16 compares selected SPAM variants with each other and
chosen user preferences: (a) a set maximizing hypervolurpegvides the test statistics for each iteration. As can lem se
(b) a divided set close to two reference points, (c) focum the left, already aftet50 iterations the differences become
on the extremes using corresponding weight combinatioriéghly significant when comparing SPAM witk';"" and
(d) closeness to a given reference set, (e) a set minimiziB@AM with 4?{‘%‘}“. In Fig. 16 on the right, it can be observed
the weighted epsilon-distance to the origin for a uniformiyyat SpAM with <mneart s after a competetive starting
distributed set of weight combinations, and (f) a uniformlynase—soon overtaken by SPAM with the hypervolume in-
Fj|str!buFe|(j set o;lsol;mor;s."Ifh|stdem(;|nsttrrlates that;ePAM dlicatort. As already mentioned, this reflects the dependehcy
in principle capable of optimizing towards the user prefiess _minpar i inati
th:ft arepencoged in thepcorresgonding set preferer;ceormalatiﬁpl’H from the number of weight combinations.
It can also be seen that the density-based approaches b¥) Running Time Issues:ast, we investigate the running
NSGA-Il and SPEA2 can be imitated by using a correspondifighe of SPAM where the absolute computation time is consid-
diversity indicator—although this is not the goal of thisdtu ered instead of the number of fitness evaluations. The questi
2) Usefulness for SearchAfter having seen the proof- is how the choice of the set preference relation and the fitnes
of-principle results for single runs, we now investigate thassignment procedure (Alg. 4 versus Alg. 5) affects the reimb
guestion of how effective SPAM is in optimizing a givenof iterations that can be performed in a fixed time budget.
set preference relatiog, i.e., how specific the optimization Table V reveals that the average computation time per itera-
process is. The hypothesis is that SPAM used in combinatiban heavily depends on the specific set preference relation
with a specificx 4 (let us say SPAM-A) yields better ParetoFor instance, the hypervolume-based set preferenceamati
set approximations than if used with any other set preferenioduce considerably more computation time—especially in
relation <5 (let us say SPAM-B)—better here means witthigher dimensions—than the relation based on the epsilon
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TABLE IV
PAIRWISE STATISTICAL COMPARISON OF30 RUNS PER ALGORITHM AFTERLIO000GENERATIONS IN THE NOTATION U : U’, U (RESR U’) STANDS FOR
THE NUMBER OF TIMES A SET GENERATED BY ALGORITHMA (RESR B) BEATS A SET OF ALGORITHMB (RESR A) WITH REGARD TO THE TEST
RELATION ASSOCIATED WITH THE CORRESPONDING ROWA STAR NEXT TO THESE NUMBERS INDICATES A SIGNIFICANT DIFFERERE, THE FEW CASES
WHERE THIS WAS NOT THE CASE ARE SHOWN IN BOLD

(a) 2-dimensional DTLZ2

alg B. SPAM with set preference relation ... IBEA | NSGA-II test

. minpart minpart minpart minpart minpart minpart i
alg. A <P17H SH <Rz,H ‘ 451,1{ ‘ <Po <H,0,D <b relation
3, 4”,;';"",3” - | 900: O* | 900: 0* | 900: O* | 899: 1* | 900: O* | 900: O* | 900: O* | 900: O* || <p1.m

£§ <7 | 900: 0* -1 900: O0* | 900: O* | 900: O* | 456:444 | 900: 0* | 900: O* | 900: O* || <y
;aé <popat 11 900: 0 | 900: 0* - | 900: 0* | 900: 0* | 900: O* | 900: O* | 900: O* | 900: O* || <Rro.m
%E’% <mat 1 900: 0% | 900: 0* | 900: O - | 900: ©0* | 889: 1* | 900: O* | 900: O* | 900: O* || <c1.m
2 <poPat 1l 900: 0* | 60:840 | 830: 70* | 846: 54* - | 75:835 | 900: O* | 134:766 | 835: 75* || <po,n
Swu.c.p || 900: OF | 444:456 | 900: O* | 900: O* | 843: 57* - [ 900: 0* | 820: 80* | 900: O* || Sm.c.o

* preference is significant at the 0.001 level (1-tailed, foroni-adjusted)
(b) 2-dimensional DTLZ5

alg B. SPAM with set preference relation ... IBEA | NSGA-II test

. minpart minpart minpart minpart minpart minpart i
alg. A Spiu <u ‘ -“<R2,H ‘ Se1,H ‘ <po ‘ <H,c,D <b relation
R <pypart - | 900: O* | 900: O* | 900: O* | 900: O* | 900: O* | 900: O* | 887: 13* | 900: O* || <p1,m

£§ <7 | 900: 0* - | 900: 0* | 900: 0* | 900: O* | 445:455 | 900: O* | 900: O* | 900: O* || <y
35_§ <popat 11 900:  0* | 900: 0* - | 900: 0* | 900: O0* | 900: O* | 900: O* | 900: 0* | 900: O* || <po.m
%“‘:’%.‘j <meat 1l 900: 0 | 891: 9* | 900: O - | 900: 0* | 897: 3* | 900: O* | 900: O* | 900: O* || <c1.m

n <PoPm || 898: 2* | 22:878 | 891 9* [ 899: 1* - | 12:888 | 788:112* | 95:805 | 885: 15* || <pq
Su.cp || 900: O | 455:445 | 900. O* | 900: O* | 795:105% - [ 900: 0* | 900: O* | 900: O* || Km.c.o

* preference is significant at the 0.001 level (1-tailed, ®oroni-adjusted)
(c) 5-dimensional DTLZ2

alg B. SPAM with set preference relation ... IBEA | NSGA-II test
a|g_ A <r}1;|;1p}ai11rt <n}:l[mpart ‘ ﬁglgpgrt ‘ ﬁinin?;rt ‘ ﬁrg(r;part ‘ <H,C,D _\<rg|npart relation
B, . <ppart - | 820: 80* | 820: 80* | 805: 95* | 838: 62* | 820: 80* | 900: 0* | 820: 80* | 900: O* || <pi,u
s2 1| <™ g00: o0 - | 900: 0* | 900: 0* | 900: O* | 404:496 | 900: 0* | 895: 5* | 900: O* || <y
Egé <Pt |l 900: 0% [ 900: 0% - | 900: ©0* | 900: O* | 900: 0% | 900: O0* | 900: O* | 900: O* || <go.m
&%‘gg <MRt 1l 900: 0% | 895: 5* | 870: 30* - | 894: 6* | 895: 5% | 900: 0* | 895 5* | 900: O* || <17
2 <P || 880: 20* | 810: 90* | 871: 29* | 899: 1* - | 900: 0% [ 898: 2*| 32:868 | 900: O* || <po

<mc.p || 900: O* | 496:404 | 900: O* | 900: O* | 843: 57 - [ 900 0F | 900: 0* [ 900: O* || <m.c.p

* preference is significant at the 0.001 level (1-tailed, foroni-adjusted)
(d) 5-dimensional DTLZ5

alg B. SPAM with set preference relation ... IBEA | NSGA-II test
alg_ A <g;m}a}rt <Enpart ‘ <E|gp§rt ‘ #T{nﬁfn ‘ <|11;|(r]1part ‘ <H,C,D <gmpart relation
8, <P - | 877: 23*| 900: 0* | 900: 0* | 900: O* | 723:177 | 900: O* | 874: 26* | 900: O* || <p1.m
ce 1| <Pl 900: o - | 900: 0* | 900: 0* | 900: O* | 455:445 | 900: O* | 900: O* | 900: O* | <g
E%é <paPat || 900: 0* | 900: O* - | 900: 0* | 900: 0* | 900: O* | 900: O* | 900: O* | 900: O* || <po,m
%g‘@" <t || s92: 8+ | 618:282 | 900: 0* - | 900: 0* | 626:274 | 900: O0* | 893: 7* | 900: O* || <c1.m
” <poP™ [ 900: 0+ | 841: 59* | 819: 81* | 873: 27* - | 752:148* | 867: 33 | 121:779 | 547:453 || <po

<m,c.p || 900: O* | 445455 | 900: O* | 900: O* | 900: OF - [ 900 0F [ 900: O* | 900: O* || Swm.c.p

* preference is significant at the 0.001 level (1-tailed, f&oroni-adjusted)

indicator. However, the influence of the fithess assignment3) Most existing MOEAs are (implicitly) based on set
algorithms is even stronger: the use of Alg. 4 slows down preference information.

the search by a factor df00 in comparison to Alg. 5. _ _ _
When applying an evolutionary algorithm to the problem

VI. CONCLUSIONS of approximating the Pareto-optimal set, the populatiselit
. _ . can be regarded as the current Pareto set approximation.
In this paper, we have discussed EMO from a singlgye gynsequent application of mating selection, variatio
objective perspective that is centered around set prefereRnironmental selection heuristically produces a new tBare
relations and based on the following three observations: (¢ approximation that—in the ideal case—is better than the
1) The result of an MOEA run is usually a set of trade-offrevious one. In the light of the underlying set problem, the
solutions representing a Pareto set approximation;  population represents a single element of the search space
2) Most existing MOEAs can be regarded as hillvhich is in each iteration replaced by another element of
climbers—usually (1,1)-strategies—on set problems; the search space. Consequently, selection and variation ca
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Fig. 16. Each figure compares two SPAM variants for the bidbiedTLZ2 problem: SPAM with<T"**" versus SPAM with< TP (left) and SPAM

with 4%“””&" versus SPAM withﬁgg”g". Per figure, both algorithms are compared with respect to bettipreference relations (without set partitioning).

The solid line on the left gives for each iteration, the numiferases %0 runs versus0 runs) where SPAM withs """ is better than SPAM withs TPt

with respect to<z. The dotted line on the left shows how often SPAM wiﬂj’li;‘pf}‘ is better than SPAM witmg”pa” regarding<p1, 7 Over time. The
right figure provides the same whe#gp f is replaced by<po, .
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< 500 < 500 . ~POH
= =
L 400 L 400 | - .
5 300 1 8 500 - :
= <minpart = N e L
L SH ] L - J
2000 _<minpart 200 L
SPIH ER -
100 f 1 100 f Tz e .
0 . . . . 0 . A .
0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration
; inpart inpart . inpart inpart
(a) SPAM using<'p1"" and <" (b) SPAM usmg<"}l'8f'g and 5P

TABLE V - . . . . . .
AVERAGED RUNNING TIME IN SECONDS PER ITERATION FOISPAMusing ~ OPtimization (SPAM), which is basically a hill climber and

THE GENERAL FITNESS ASSIGNMENT PROCEDUREALG. 4) AS WELL AS generalizes the concepts found in most modern MOEAs.

THE PROCEDURE DEDICATED TO UNARY INDICATORYALG. 5). THE SPAM can be used in combination with any type of set
COMPARISON ARE PROVIDED FOR THE TWO SET PREFERENCE RELATISGN

SMINPART AN MINPART preference relation and thereby offers full flexibility ftre
decision maker; furthermore, it can be shown to converge
algorithm 2d 5d under general conditions. As the experimental resultatd]
SPAM using Alg. 4 and<!;™"  0.0601s  24.8660s set preference relations can be used to effectively guide th
SPAM using Alg. 5 and<}"™"  0.0055s  0.2128s search as well as to evaluate the outcomes of multiobjective
SPAM using Alg. 4 and<},"™"  0.0170s  253.8699s optimizers.

SPAM using Alg. 5 and<7,"™"  0.0097s 1.9722s

The new perspective that this paper offers is, roughly speak
ing, considering EMO as using evolutionary algorithms for
single-objective set problems in the context of multiokjec

be regarded as a mutation operator on populations resp. s gimization. Clearly_, .there aré many open Issues, .8, th
Somewhat simplified, one may say that a classical MOEA us gsign of both specnﬂc and arbitrary set preference relatio
to approximate the Pareto-optimal set i§lal)-strategy on a (© 'Ntegrate p:;mcular ussr prefgrenc;asf, espemallr)]/I Ipltef—. N
set problem. Furthermore, MOEAs are usually not preferendg€nces. Furthermore, the design of fast search algorithms
free. The main advantage of generating methods such _d;gllcated to part|cu_lar set pr_e_ference_ relations is of r_ngh
MOEASs is that the objectives do not need to be aggregatiie"est: SPAM provides flexibility, but is rather a baselin

or ranked a priori; but nevertheless preference informaiso algo.nthm that _naturally cannot _ach|eve_ maximum pos.smle
required to guide the search, although it is usually weakdr aeff|0|ency: And finally, one may th',nk (_)f using a true e\{olmtio
less stringent. In the environmental selection step, fstaince, &Y @lgorithm for set-based multiobjective optimizatiame

an MOEA has to choose a subset of individuals from tHgat Operates on populations of Pareto set approximations—
parents and the offspring which constitutes the next Paré(ygether this approach can be beneficial is an open research

set approximation. To this end, the algorithm needs to kndwrUe-

the criteria according to which the subset should be selecte

in particular when all parents and children are incomparabl

i.e., mutually nondominating. That means the generatioa of REFERENCES
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APPENDIX s is a refinement. To this end, we again use (3) to derive

In order to prove Theorem 2.7 we first need to state a set (A s B)A (B £s4) < 4)
of smaller results: =[((A=s B)A (A" B) V(A <s B)A
Lemma A.1:If all preference relationsg/, 1 < j < k in (B #s A)V (B #* A)) A (A £s B)

Def. 2.6 are preorders, thegs is a preorder. . ' .

_ o : As <g is a weak refinement, we need to consider two cases.
‘ Propf of ?1} Reflexivity: As A < hA holds_for aIfIl < KA = B holds, thenA £s B holds as well asB £s A
1 < k (since allx* are preorders), we have= k in Def. 2.6 In this case, the expression becontes<* B) A (B £+ A)

(i). Therefore,(A <s A) < (A <* A) and the reflexivity which yields true. IfA <g B holds, thend #s B, B #s
holds. Transitivity: We proof transitivity by induction. &\first A and B £s A hold. The expression above becomes now
need to show that transitivity holds fér = 1. In this case, (A <s B) A (B £s A.) which also yields true -

we haved <5 B & A <' B asi = k in Def. 2.6 (i). N ve th t of Th 27
Transitivity holds as<! is a preorder. Now we have to show oW W€ can give the proof of Theorem 2.7.

that transitivity holds fork if it holds for k& — 1. Let us define Proof of Theorem 2.7: Because of Lemma A.3, we
the sequence of length— 1 as.S’. Then we can reformulate know that the sequencé’ = (x',<?,...,<") leads to
Def. 2.6 as follows: a refinement ofx. We just need to show that additional

preference relationsg’, ¥’ < j < k in the sequence do

(A<sB) & (A=s B)A(A<" B))V(A=<s B) (3) not destroy this property. We again use the same induction
e _ principle as in the previous proofs. Let us suppose tffat
Now, we can show that transitivity holds: yields a refinement (as shown above) &hbas one additional
relation<**1, i.e. k = k' + 1. Using again (3) we can derive
(A=<sB)A (B =sC) = the expression forA <s B as in (4). If we suppose that

=[((A=s B)A (A <" B))V (A <s B)A A < B holds in the given preorder, ands is a refinement,
(B=s C)A(B<"C))Vv (B <s Q)] = the relationsd #s B, B #s A, A <s A and B £s A hold.
> Y A :
=((A=s B)A(B=s C)A(A<*B)A(=FO)V }Ijic;rldtzetrizpressmn in (4) we gétl <" B)A(B #" A) wh|c:
((fH B)n (B =s0) = Proof of Th 32:S ditions 1 and 2
_ . A<s C) o A<sC roof of Theorem 3.2: Suppose conditions 1 an
(A= )N (A7 CO)) V(A =s =s hold, and letA, B € ¥ be two arbitrary sets witd < B,

ie. (A B)A (B % A). For the proof, we will apply the two
_ . , _ local transformations in order to gradually charfgeéo A and
Lemma A.2:If all preference relationss’, 1 < j < kin ghow that at each step the indicator value does not increase
Def. 2.6 are total preorders, thefs is a total preorder. and there is at least one step where it decreases. First, we
Proof of A.2: A preorder< is called total if(A < B) V  successively add the elementsito A; since for eacth € B
(B < A) holds for all A, B € . Using the same induction it holds A < {b}, according to condition 1 the indicator value
principle as in the proof of A.1 we can notice that for= 1 remains constant after each step, il¢4) = I(AU B). Now,
we have(A xs B) < (A <! B) and thereforexs is total. we successively add the elementsofto B; since A < B,
For the induction we know that (3) holds. Therefore, we cahere exists an elemeat< A such thatB £ {a} according
conclude: to the conformance ok with <. That means when adding
the elements ofA to B the indicator value either remains
(A<sB) V(B <s4) & unchanged (condition 1) or decreases (and it will decrease
&(A=s B)A(A<"B))V ((B=s A)A(B <" A)Vv at least once, namely far, according to condition 2), and
(A<g B)V (B <g A) < therelforeI(A UbB) <(f4()B). (?Zmbin)ing trge )twohin:]ermeldiate
_ results, one obtaing(A) = I(A U B) < I(B) which implies
S(A=s B)V(A=s B)V (B <s 4) & true A =y B and B #; A. Hence, %, refines . For weak
m refinement, the proof is analogous.

Lemma A.3:If <* in Def. 2.6 is a refinement of a given 10 the prove that the second condition is a necessary

preference relations and all relations<’, 1 < j < k are condition, supposed £ {b}. According to Definition 2.2,
weak refinements ok, then<s is a refinement of. (AU {b}) < A which ;/mplle{s}t)hat(A U {b}) <1 A (weak
. refinement) respectivelyAd U {b}) <, A (refinement). Hence,

Proof of A.3: Let us suppose that < B holds for some . .
A,B € ¥. We have to shg\?v thatl <s B holds. At first I(AU{b}) < I(A) respectivelyl (AU {b}) < I(A) according

note, theA </ B holds for all1 < j < k as <’ are weak 0 (1)- =
refinements andl <* B holds as<” is a refinement. Let us Proof of Corollary 4.5: We will show that in the case of
now consider the Sequenéé of lengthk — 1. Because a“ﬁj a 3-dimensional objective spacg C RS, the epsilon indicator
are weak refinements, eithdr=7 B or A <7 B holds. Taking Ze1(4) = Ic(A, R) is not1-greedy.

into account the construction ¢f according to Def. 2.6 we  The proof is done by providing a counterexample. We will
can easily see thal <s B holds. Based on the fact thatss give a scenario consisting of an objective spafec R3,

is a weak refinement we will show that <s B holds, i.e. reference seR C Z, a maximum set size: and an initial set
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P € ¥,,. We will show that there is no path from the initialdefined as follows:

set P to an optimal setP* such that every time only one
element of the set is exchanged. In particular, we h&ve
{2V, 22,23, 24}, R = {r',72,73,r%}, m = 2, P = {2, 22},
P* = {23 2%}, and f : X — Z according to Table VI. With

TABLE VI
COUNTEREXAMPLE FOR1-GREEDYNESS OF THE UNARY EPSILON
INDICATOR.
[ T T2 [ FED T FED [ [ D ]
1 4 0 6 3 6 2 0 3
2 0 4 3 6 2 6 0 3
3 6 6 2 2 4 4 6 2

the valuese(z, ) shown in Table VII we obtain the epsilon
indicator value for all possible sets ds({z!, 2%}, R) = 2,
I.({zY 23}, R) = 3, I.({z*,2*}, R) = 3, I.({z%, 23}, R) =
3, I.({z%,2*},R) = 3 and I.({z*,2*}, R) = 0. Therefore,

TABLE VI
VALUES €(z,7) FOR THE COUNTEREXAMPLE

AR IR
[(MIENIESIIN
N w| N o
» OO
OOl Wl w

from the initial set{z!, 22}, every set mutation operator that
exchanges one element only leads to a worse indicator value.

Finally, note that it can be shown, that R?, the epsilon
indicator is1-greedy. ]

Proof of Corollary 4.6:

TABLE VIl
COUNTEREXAMPLE FOR1-GREEDYNESS OF THE HYPERVOLUME
INDICATOR.

[ T r TFe) T T FED T D]
1 10 1 6 5 7
2 7 6 2 3 1

We will show that in the case of 2dimensional objective
spaceZ C R?, the hypervolume indicatofy is not 1-greedy.

The proof is done by providing a counterexample similar
to the proof of the previous Corollary. Here we use again a
decision spac&’ = {z!, 2% 23 21}, a reference sek = {r},
an initial setP = {z!, 22}, an optimal setP* = {23, 2%},
and f : X — Z according to Table VIIl. Using this
scenario, we obtain the hypervolume indicators for all jides
populations asly ({z', 2%}, R) = =25, Iy({z!,2%},R) =
=24, Iy({zt,2*},R) = —24, Iy({z?,23},R) = —24,

Iy ({2?,2*}, R) = —24 and I ({z®,2*}, R) = —26. There-
fore, from the initial sefx!, 2}, every set mutation operator
that exchanges one element only leads to a worse indicator
value. _ |
Weight combinations foxTs " In the case of five
objectives, overal82 -5 weight combinations are used for the

set preference relatior'TsPa", cf. Table II. In detail,A is

21

A

{
(07 07 07 07 1)7
(0.01/4,0.01/4,0.01/4,0.01/4,0.99),

.((.):?;/4, 0.3/4,0.3/4,0.3/4,0.7)
}

{

(0,0,0,1,0),
(0.01/4,0.01/4,0.01/4,0.99,0.01/4),
(0.3/4,0.3/4,0.3/4,0.7,0.3/4)

}

{
(17 07 07 07 0)7
(0.99,0.01/4,0.01/4,0.01/4,0.01/4),

(07 0.3/4,0.3/4,0.3/4,0.3/4)
}



